216
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Combustion of micro wax from polyethylene pyrolysis

, , , , , & show all
Pages 1246-1258 | Received 19 Aug 2014, Accepted 24 Feb 2018, Published online: 21 Mar 2018

References

  • Abnisa, F., and Wan Daud, W.M.A. 2014. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag., 87, 71–85.
  • Allan, K.M., Kaminski, J.R., Bertrand, J.C., Head, J., and Sunderland, P.B. 2009. Laminar smoke points of wax candles. Combustion Sci. Technol., 181, 800–811.
  • Al-Zahrani, S.M. 1999. Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers. Ind. Eng. Chem. Res., 39, 367–371.
  • Barroso, J., Ballester, J., and Pina, A. 2010. Some considerations about bioethanol combustion in oil-fired boilers. Fuel Process. Technol., 91, 1537–1550.
  • Bazooyar, B., Ghorbani, A., and Shariati, A. 2011. Combustion performance and emissions of petrodiesel and biodiesels based on various vegetable oils in a semi industrial boiler. Fuel, 90, 3078–3092.
  • Bhimani, S., Alvarado, J.L., Annamalai, K., and Marsh, C. 2013. Emission characteristics of methanol-in-canola oil emulsions in a combustion chamber. Fuel, 113, 97–106.
  • Chelemuge, N.A.M.I.O.K.A.T., Yoshikawa, K., Takeshita., M., and Fujiwara, K. 2012. Commercial-scale demonstration of pollutant emission reduction and energy saving for industrial boilers by employing water/oil emulsified fuel. Appl. Energy, 93, 517–522.
  • Coutinho, J.A.P., Dauphin, C., and Daridon, J.L. 2000. Measurements and modelling of wax formation in diesel fuels. Fuel, 79, 607–616.
  • Daho, T., Vaitilingom, G., Sanogo, O., Ouiminga, S.K., Zongo, A.S., Piriou, B., and Koulidiati, J. 2014. Combustion of vegetable oils under optimized conditions of atomization and granulometry in a modified fuel oil burner. Fuel, 118, 329–334.
  • Fujishima, H., Takekoshi, K., Kuroki, T., Tanaka, A., Otsuka, K., and Okubo, M. 2013. Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process. Appl. Energy, 111, 394–400.
  • Ghorbani, A., and Bazooyar, B. 2012. Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler. Energy, 44, 217–227.
  • Huang, W.-C., Hou, -S.-S., and Lin, T.-H. 2017. Combustion characteristics of a 300kWth oil-fired furnace using castor oil/diesel blended fuels. Fuel, 208, 71–81.
  • Jiang, X., Siamas, G.A., Jagus, K., and Karayiannis, T.G. 2010. Physical modelling and advanced simulations of gas–liquid two-phase jet flows in atomization and sprays. Prog. Energy Combustion Sci., 36, 131–167.
  • Kang, S.B., Kim, J.J., and Im, Y.H. 2013. An experimental investigation of a direct burning of crude Jatropha oil (CJO) and pitch in a commercial boiler system. Renew. Energy, 54, 8–12.
  • Karvonen, J., Kunttu, J., Suominen, T., Kangas, J., Leskinen, P., and Judl, J. 2018. Integrating fast pyrolysis reactor with combined heat and power plant improves environmental and energy efficiency in bio-oil production. J. Clean Prod., 183, 143–152.
  • Keramiotis, C., Zannis, G., Skevis, G., and Founti, M.A. 2013. Performance investigation of Fischer–tropsch kerosene blends in a laboratory-scale premixed flame burner. Exp. Thermal Fluid Sci., 44, 868–874.
  • Korpela, T., Kumpulainen, P., Majanne, Y., Häyrinen, A., and Lautala, P. 2017. Indirect NOx emission monitoring in natural gas fired boilers. Control Eng. Pract., 65, 11–25.
  • Kunwar, B., Cheng, H.N., Chandrashekaran, S.R., and Sharma, B.K. 2016. Plastics to fuel: A review. Renew. Sustain. Energy Rev., 54, 421–428.
  • Lasek, J.A., Kopczyński, M., Janusz, M., Iluk, A., and Zuwała, J. 2017. Combustion properties of torrefied biomass obtained from flue gas-enhanced reactor. Energy, 119, 362–368.
  • Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., and Chiaramonti, D. 2014. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Appl. Energy, 116, 178–190.
  • Li, C.-T., Mi, -H.-H., Lee, W.-J., You, W.-C., and Wang, Y.-F. 1999. PAH emission from the industrial boilers. J. Hazard. Mater., 69, 1–11.
  • Ling, Z., Zhou, H., and Ren, T. 2015. Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner. Energy, 91, 110–116.
  • Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., and Olazar, M. 2017. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev., 73, 346–368.
  • Lu, Y., Huang, Z., Hoffmann, R., Amundsen, L., and Fogler, H.S. 2012. Counterintuitive effects of the oil flow rate on wax deposition. Energy Fuels, 26, 4091–4097.
  • Malleswara Rao, T.V., Dupain, X., and Makkee, M. 2012. Fluid catalytic cracking: Processing opportunities for Fischer–tropsch waxes and vegetable oils to produce transportation fuels and light olefins. Microporous Mesoporous Mater., 164, 148–163.
  • Marmentini Vivas, B.M., and Zanoelo, É.F. 2011. An experimental investigation of flammability limits and autoignition temperatures of petrofuels and biofuels in a tubular burner. Combustion Sci. Technol., 183, 1433–1444.
  • May-Carle, J.B., Pidol, L., Nicolle, A., Anderlohr, J.M., Togbé, C., and Dagaut, P. 2012. Experimental and numerical study of F-T/biodiesel/bioethanol surrogate fuel oxidation in jet-stirred reactor. Combustion Sci. Technol., 184, 901–915.
  • Modesty Kelechukwu, E., Said Al-Salim, H., and Saadi, A. 2013. Prediction of wax deposition problems of hydrocarbon production system. J. Petroleum Sci. Eng., 108, 128–136.
  • Nazari, S., Shahhoseini, O., Sohrabi-Kashani, A., Davari, S., Sahabi, H., and Rezaeian, A. 2012. SO2 pollution of heavy oil-fired steam power plants in Iran. Energy Policy, 43, 456–465.
  • Nigam, P.S., and Singh, A. 2011. Production of liquid biofuels from renewable resources. Prog. Energy Combustion Sci., 37, 52–68.
  • Predel, M., and Kaminsky, W. 2000. Pyrolysis of mixed polyolefins in a fluidised-bed reactor and on a pyro-GC/MS to yield aliphatic waxes. Polym. Degrad. Stab., 70, 373–385.
  • Ravindra, K., Sokhi, R., and Van Grieken, R. 2008. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ., 42, 2895–2921.
  • Rebola, A., and Costa, M. 2002. Simultaneous reduction of NOx and particulate emissionsfrom heavy fuel oil-fired furnaces. Proc. Combustion Inst., 29, 2243–2250.
  • Rezaei, K., Wang, T., and Johnson, L. 2002. Combustion characteristics of candles made from hydrogenated soybean oil. J. Am. Oil Chemists’ Soc., 79, 803–808.
  • Sáez, A., Flores-Maradiaga, A., and Toledo, M. 2012. Liquid butane as an alternative fuel for diesel oil burners. Appl. Thermal Eng., 45–46, 1–8.
  • Sajdak, M. 2017. Impact of plastic blends on the product yield from co-pyrolysis of lignin-rich materials. J. Anal. Appl. Pyrolysis, 124, 415–425.
  • Sajdak, M., Muzyka, R., Hrabak, J., and Słowik, K. 2015. Use of plastic waste as a fuel in the co-pyrolysis of biomass: part III: Optimisation of the co-pyrolysis process. J. Anal. Appl. Pyrolysis, 112, 298–305.
  • Sajdak, M., and Słowik, K. 2014. Use of plastic waste as a fuel in the co-pyrolysis of biomass: part II. Variance analysis of the co-pyrolysis process. J. Anal. Appl. Pyrolysis, 109, 152–158.
  • Trigui, A., Karkri, M., and Krupa, I. 2014. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Convers. Manag., 77, 586–596.
  • Urbaniak, W., Wasiak, W., and Fall, J. 2007. Waxes – products of thermal degradation of waste plastics – obtaining, capabilities, and application. Arch. Waste Manag. Environ. Prot., 6, 71–78.
  • Villasenor, R., and Escalera, R. 1998. A highly radiative combustion chamber for heavy fuel oil combustion. Int. J. Heat Mass Transf., 41, 3087–3097.
  • Weber, R., Smart, J.P., and Kamp, W.V. 2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc. Combustion Inst., 30, 2623–2629.
  • Williams, P.T., and Williams, E.A. 1999. Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. J. Anal. Appl. Pyrolysis, 51, 107–126.
  • Wong, S.L., Ngadi, N., Abdullah, T.A.T., and Inuwa, I.M. 2015. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev., 50, 1167–1180.
  • Xiaoli, Z. 2012. An overview of wax utilization in China. Eur. Chem. Bull., 1, 210–211.
  • Yang, -H.-H., Lee, W.-J., Chen, S.-J., and Lai, S.-O. 1998. PAH emission from various industrial stacks. J. Hazard. Mater., 60, 159–174.
  • Zaky, M.T., and Tawfik, S.M. 2011. Production of lubricating base oil from slop wax by different subsequent refining techniques. Fuel Process. Technol., 92, 447–451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.