355
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effects of nitromethane addition on the laminar burning velocity and ignition delay of syngas/air flames

ORCID Icon &
Pages 1283-1301 | Received 03 Jun 2017, Accepted 02 Mar 2018, Published online: 20 Mar 2018

References

  • Ai, Y., Zhou, Z., Chen, Z., and Kong, W. 2014. Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures. Fuel. 137, 339–345.
  • Arrieta, C.E., and Amell, A.A. 2014. Combustion analysis of an equimolar mixture of methane and syngas in a surface-stabilized combustion burner for household appliances. Fuel. 137, 11–20.
  • Arroyo, J., Moreno, F., Muñoz, M., Monné, C., and Bernal, N. 2014. Combustion behavior of a spark ignition engine fueled with synthetic gases derived from biogas. Fuel. 117, 50–58.
  • Bhaduri, S., Contino, F., Jeanmart, H., and Breuer, E. 2015. The effects of biomass syngas composition, moisture, tar loading and operating conditions on the combustion of a tar-tolerant HCCI (Homogeneous Charge Compression Ignition) engine. Energy. 87, 289–302.
  • Bhattacharya, A., Datta, A., and Wensing, M. 2017. Laminar burning velocity and ignition delay time for premixed isooctane–air flames with syngas addition. Combust. Theory Model. 21(2), 228–247.
  • Bouvet, N., Chauveau, C., Gökalp, I., and Halter, F. 2011. Experimental studies of the fundamental flame speeds of syngas (H 2/CO)/air mixtures. Proc. Combust. Inst. 33(1), 913–920.
  • Boyer, E. 2005. Combustion characteristics and flame structure of nitromethane liquid monopropellant. Ph.D Thesis. The Pennsylvania State University.
  • Boyer, E., and Kuo, K.K. 2007. Modeling of nitromethane flame structure and burning behavior. Proc. Combust. Inst. 31(2), 2045–2053.
  • Bradley, J.N. 1961. Shock-wave decomposition of nitroparaffins. Part 1.—Mass-spectrometric study of nitromethane decomposition. Trans. Faraday Soc. 57, 1750–1756.
  • Brequigny, P., Dayma, G., Halter, F., Mounaïm-Rousselle, C., Dubois, T., and Dagaut, P. 2015. Laminar burning velocities of premixed nitromethane/air flames: An experimental and kinetic modeling study. Proc. Combust. Inst. 35(1), 703–710.
  • Bush, K.C., Germane, G.J., and Hess, G.L. 1985. Improved utilization of nitromethane as an internal combustion engine fuel. SAE Paper 852130.
  • Butler, C.J., and Hayhurst, A.N. 1998. Measurements of the concentrations of free hydrogen atoms in flames from observations of ions: Correlation of burning velocities with concentrations of free hydrogen atoms. Combust. Flame. 115, 241–252.
  • Cha, H., Eom, T., Song, S., and Chun, K.M. 2015. An experimental study on the fuel conversion efficiency and NO x emissions of a spark-ignition gas engine for power generation by fuel mixture of methane and model syngas (H 2/CO). J. Nat. Gas Sci. Eng. 23, 517–523.
  • Dai, X., Ji, C., Wang, S., Liang, C., Liu, X., and Ju, B. 2012. Effect of syngas addition on performance of a spark-ignited gasoline engine at lean conditions. Int. J. Hydrogen Energy. 37(19), 14624–14631.
  • De Jaegere, S., and Van Tiggelen, A. 1959. Comparative study of flame propagation in compounds containing nitrogen oxides. Combust. Flame. 3, 187–200.
  • Eckhoff, R.K., Ngo, M., and Olsen, W. 2010. On the minimum ignition energy (MIE) for propane/air. J. Hazard. Mater. 175(1), 293–297.
  • Egolfopoulos, F.N., Hansen, N., Ju, Y., Kohse-Höinghaus, K., Law, C.K., and Qi, F. 2014. Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog. Energy Combust. Sci. 43, 36–67.
  • Faghih, M., and Chen, Z. 2017. Two-stage heat release in nitromethane/air flame and its impact on laminar flame speed measurement. Combust. Flame. 183, 157–165.
  • Frassoldati, A., Faravelli, T., and Ranzi, E. 2007. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int. J. Hydrogen Energy. 32(15), 3471–3485.
  • Germane, G.J. 1985. A technical review of automotive racing fuels. SAE Technical Paper 852129.
  • González, F.O.C., Mahkamov, K., Lora, E.E.S., Andrade, R.V., and Jaen, R.L. 2013. Prediction by mathematical modeling of the behavior of an internal combustion engine to be fed with gas from biomass, in comparison to the same engine fueled with gasoline or methane. Renew. Energy. 60, 427–432.
  • Goswami, M., Bastiaans, R.J.M., Konnov, A.A., and De Goey, L.P.H. 2014. Laminar burning velocity of lean H 2–CO mixtures at elevated pressure using the heat flux method. Int. J. Hydrogen Energy. 39(3), 1485–1498.
  • Goswami, M., Van Griensven, J.G.H., Bastiaans, R.J.M., Konnov, A.A., and De Goey, L.P.H. 2015. Experimental and modeling study of the effect of elevated pressure on lean high-hydrogen syngas flames. Proc. Combust. Inst. 35(1), 655–662.
  • Hagos, F.Y., Aziz, A.R.A., and Sulaiman, S.A. 2016. Effect of injection timing on combustion, performance and emissions of lean-burn syngas (H2/CO) in spark-ignition direct-injection engine. Int. J. Engine Res. 17(9), 921–933.
  • He, M., Xiao, B., Hu, Z., Liu, S., Guo, X., and Luo, S. 2009. Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition. Int. J. Hydrogen Energy. 34(3), 1342–1348.
  • Hillenbrand, L.J., Jr, and Kilpatrick, M.L. 1953. The thermal decomposition of nitromethane. J. Chem. Phys. 21(3), 525–535.
  • Hu, E., Huang, Z., He, J., Jin, C., and Zheng, J. 2009. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int. J. Hydrogen Energy. 34(11), 4876–4888.
  • Jain, S., Li, D., and Aggarwal, S.K. 2013. Effect of hydrogen and syngas addition on the ignition of iso-octane/air mixtures. Int. J. Hydrogen Energy. 38(10), 4163–4176.
  • Ji, C., Dai, X., Ju, B., Wang, S., Zhang, B., Liang, C., and Liu, X. 2012. Improving the performance of a spark-ignited gasoline engine with the addition of syngas produced by onboard ethanol steaming reforming. Int. J. Hydrogen Energy. 37(9), 7860–7868.
  • Ji, C., Dai, X., Wang, S., Liang, C., Ju, B., and Liu, X. 2013. Experimental study on combustion and emissions performance of a hybrid syngas–gasoline engine. Int. J. Hydrogen Energy. 38(25), 11169–11173.
  • Kee, R.J., Rupley, F.M., and Miller, J.A. 1989. Chemkin II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Sandia National Laboratories Report no. SAND 89-8009B.
  • Kéromnès, A., Metcalfe, W.K., Heufer, K.A., Donohoe, N., Das, A.K., Sung, C.J., Herzler, J., Naumann, C., Griebel, P., Mathieu, O., and Krejci, M.C. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame. 160(6), 995–1011.
  • Krejci, M.C., Mathieu, O., Vissotski, A.J., Ravi, S., Sikes, T.G., Petersen, E.L., Kérmonès, A., Metcalfe, W., and Curran, H.J. 2013. Laminar flame speed and ignition delay time data for the kinetic modeling of hydrogen and syngas fuel blends. J. Eng. Gas Turb. Power. 135(2), 21503–21509.
  • Law, C.K., Wu, F., Egolfopoulos, F.N., Gururajan, V., and Wang, H. 2015. On the rational interpretation of data on laminar flame speeds and ignition delay times. Combust. Sci. Technol. 187(1–2), 27–36.
  • Lee, H.C., Jiang, L.Y., and Mohamad, A.A. 2014. A review on the laminar flame speed and ignition delay time of Syngas mixtures. Int. J. Hydrogen Energy. 39(2), 1105–1121.
  • Lin, C.Y., Tsai, C.T., and Chen, L.W. 2016. Comparison of the fuel properties of nitromethane emulsions in diesel and biodiesel assisted by microwave irradiation and magnetic stirring. J. Dispers. Sci. Technol. 37(9), 1334–1340.
  • Liu, K., Fu, J., Deng, B., Yang, J., Tang, Q., and Liu, J. 2014. The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends. Energy. 73, 703–715.
  • Ma, H., Kar, K., Stone, R., Raine, R., and Thorwarth, H. 2006. Analysis of combustion in a small homogeneous charge compression assisted ignition engine. Int. J. Engine Res. 7(3), 237–253.
  • Mansfield, A.B., and Wooldridge, M.S. 2015. The effect of impurities on syngas combustion. Combust. Flame. 162(5), 2286–2295.
  • Martínez, J.D., Mahkamov, K., Andrade, R.V., and Lora, E.E.S. 2012. Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew. Energy. 38(1), 1–9.
  • Mathieu, O., Giri, B., Agard, A.R., Adams, T.N., Mertens, J.D., and Petersen, E.L. 2016. Nitromethane ignition behind reflected shock waves: Experimental and numerical study. Fuel. 182, 597–612.
  • Mathieu, O., Petersen, E.L., Heufer, A., Donohoe, N., Metcalfe, W., Curran, H.J., Güthe, F., and Bourque, G. 2014. Numerical study on the effect of real syngas compositions on ignition delay times and laminar flame speeds at gas turbine conditions. J. Eng. Gas Turb. Power. 136(1), 011502–11509.
  • Munajat, N.F., Erlich, C., Fakhrai, R., and Fransson, T.H. 2012. Influence of water vapour and tar compound on laminar flame speed of gasified biomass gas. Appl. Energy. 98, 114–121.
  • Nauclér, J.D., Nilsson, E.J., and Konnov, A.A. 2015. Laminar burning velocity of nitromethane+ air flames: A comparison of flat and spherical flames. Combust. Flame. 162(10), 3803–3809.
  • Raine, R., and Thorwarth, H. Performance and combustion characteristics of a glow-ignition two-stroke engine. SAE Technical Paper 2004-01-1407.
  • Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., and Law, C.K. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. 38(4), 468–501.
  • Sarathy, S.M., Vranckx, S., Yasunaga, K., Mehl, M., Oßwald, P., Metcalfe, W.K., Westbrook, C.K., Pitz, W.J., Kohse-Höinghaus, K., Fernandes, R.X., and Curran, H.J. 2012. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame. 159(6), 2028–2055.
  • Shivapuji, A.M., and Dasappa, S. 2014. In-cylinder investigations and analysis of a SI gas engine fuelled with H 2 and CO rich syngas fuel: Sensitivity analysis of combustion descriptors for engine diagnostics and control. Int. J. Hydrogen Energy. 39(28), 15786–15802.
  • Starkman, E.S. 1954. Nitromethane as a piston engine fuel. SAE Paper 540186.
  • Sun, H., Yang, S.I., Jomaas, G., and Law, C.K. 2007. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc. Combust. Inst. 31(1), 439–446.
  • Szwaja, S., Kovacs, V.B., Bereczky, A., and Penninger, A. 2013. Sewage sludge producer gas enriched with methane as a fuel to a spark ignited engine. Fuel Process. Technol. 110, 160–166.
  • Thi, L.D., Zhang, Y., Fu, J., Huang, Z., and Zhang, Y. 2014. Study on ignition delay of multi‐component syngas using shock tube. Can. J. Chem. Eng. 92(5), 861–870.
  • Vancoillie, J., Demuynck, J., Galle, J., Verhelst, S., and Van Oijen, J.A. 2012. A laminar burning velocity and flame thickness correlation for ethanol–air mixtures valid at spark-ignition engine conditions. Fuel. 102, 460–469.
  • Xu, R., Wang, H., Hanson, R.K., Davidson, D.F., Bowman, C.T., and Egolfopoulos, F.N. (2017, April). Evidence supporting a simplified approach to modeling high-temperature combustion chemistry. In 10th US National Meeting on Combustion, College Park, MD.
  • Yepes, H.A., and Amell, A.A. 2013. Laminar burning velocity with oxygen-enriched air of syngas produced from biomass gasification. Int. J. Hydrogen Energy. 38(18), 7519–7527.
  • Zhang, K., Li, Y., Yuan, T., Cai, J., Glarborg, P., and Qi, F. 2011a. An experimental and kinetic modeling study of premixed nitromethane flames at low pressure. Proc. Combust. Inst. 33(1), 407–414.
  • Zhang, Q., Li, W., Lin, D.C., He, N., and Duan, Y. 2011b. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures. J. Hazard. Mater. 185(2), 756–762.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.