506
Views
24
CrossRef citations to date
0
Altmetric
Articles

Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept

, ORCID Icon, , , &
Pages 1354-1376 | Received 17 Jun 2017, Accepted 09 Mar 2018, Published online: 28 Mar 2018

References

  • Amato, A., Day, M., Cheng, R.K., Bell, J., and Lieuwen, T. 2015. Leading edge statistics of turbulent, lean, H2–air flames. Proc. Combust. Inst., 35, (2), 1313–1320.
  • Chaudhuri, S., Akkerman, V., and Law, C.K. 2011. Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E, 84, (2), 026322.
  • Damköhler, G. 1940. Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 46, (11), 601–626.
  • Daniele, S., Jansohn, P., Mantzaras, J., and Boulouchos, K. 2011. Turbulent flame speed for syngas at gas turbine relevant conditions. Proc. Combust. Inst., 33, (2), 2937–2944.
  • Davis, S., Quinard, J., and Searby, G. 2002a. Determination of Markstein numbers in counterflow premixed flames. Combustion and Flame, 130, (1), 112–122.
  • Davis, S., Quinard, J., and Searby, G. 2002b. Markstein numbers in counterflow, methane-and propane-air flames: a computational study. Combustion and Flame, 130, (1), 123–136.
  • Davis, S.G., Joshi, A.V., Wang, H., and Egolfopoulos, F. 2005. An optimized kinetic model of H 2/CO combustion. Proc. Combust. Inst., 30, (1), 1283–1292.
  • Dinkelacker, F., Manickam, B., and Muppala, S.P.R. 2011. Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combustion and Flame, 158, (9), 1742–1749.
  • Driscoll, J. 2008. Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combustion Sci., 34, (1), 91–134.
  • Filatyev, S.A., Driscoll, J.F., Carter, C.D., and Donbar, J.M. 2005. Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combustion and Flame, 141, (1–2), 1–21.
  • Karpov, V., and Lipatnikov, A.N. 1996. A test of an engineering model of premixed turbulent combustion. Proc. Combust. Inst., 26, (1), 249–257.
  • Kee, R.J., Miller, J.A., Evans, G.H., and Dixon-Lewis, G. 1988. A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. 22th Symp. (Int.) Combust., 22, (1), 1479–1494.
  • Kee, R.J., Rupley, F.M., and Miller, J.A. 1989. CHEMKIN-2: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Labs, Livermore, CA (USA).
  • Kido, H., and Nakahara, M. 1998. A model of turbulent burning velocity taking the preferential diffusion effect into consideration. JSME Int. J. Ser. B Fluids Thermal Eng., 41, (3), 666–673.
  • Kobayashi, H., Kawabata, Y., and Maruta, K. 1998. Experimental study on general correlation of turbulent burning velocity at high pressure. 27th Symp. (International) Combust., 27, (1), 941–948.
  • Kobayashi, H., Seyama, K., Hagiwara, H., and Ogami, Y. 2005. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst., 30, (1), 827–834.
  • Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., and Williams, F.A. 1996. Burning velocity of turbulent premixed flames in a high-pressure environment. 26th Symp. (International) Combust., 26, (1), 389–396.
  • Kolmogorov, A., Petrovskii, I., and Piskunov, N. 1937. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Moscow Univ. Bull. Math., 1, (–), 1–25.
  • Kuznetsov, V.R., and Sabelnikov, V.A. 1990. Turbulence and Combustion, Hemisphere, New York.
  • Law, C., and Sung, C. 2000. Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combustion Sci., 26, (4), 459–505.
  • Lipatnikov, A., and Chomiak, J. 2002. Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combustion Sci., 28, (1), 1–74.
  • Lipatnikov, A.N. 2012. Fundamentals of Premixed Turbulent Combustion, CRC Press, Boca Raton.
  • Lipatnikov, A.N., and Chomiak, J. 1998. Lewis number effects in premixed turbulent combustion and highly perturbed laminar flames. Combust. Sci. Technol., 137, (1–6), 277–298.
  • Lipatnikov, A.N., and Chomiak, J. 2005. Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combustion Sci., 31, (1), 1–73.
  • Lutz, A., Kee, R., and Miller, J. Sandia National Laboratories Report. SAND87-8248. 1990.
  • Marshall, A., Lundrigan, J., Venkateswaran, P., Seitzman, J., and Lieuwen, T. 2015. Fuel effects on leading point curvature statistics of high hydrogen content fuels. Proc. Combust. Inst., 35, (2), 1417–1424.
  • Marshall, A., Venkateswaran, P., Seitzman, J., and Lieuwen, T. Measurements of leading point conditioned statistics of high hydrogen content fuels. The 8th US National Combustion Meeting, Park City, Utah, 2013, May19-22.
  • Peters, N. 1999. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech., 384, (384), 107–132.
  • Sabel’nikov, V.A., Corvellec, C., and Bruel, P. 1998. Analysis of the influence of cold front quenching on the turbulent burning velocity associated with an eddy-break-up model. Combustion and Flame, 113, (4), 492–497.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., and Gardiner, W.C., Jr. 2000. GRI-Mech 3.0, Gas Research Inst, Chicago, IL. Available from http://www.me.berkeley.edu/gri_mech/
  • Tamadonfar, P., and Gülder, Ö.L. 2015. Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames. Combustion and Flame, 162, (12), 4417–4441.
  • Venkateswaran, P., Marshall, A., Seitzman, J., and Lieuwen, T. 2015. Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts. Combustion and Flame, 162, (2), 375–387.
  • Venkateswaran, P., Marshall, A., Shin, D.H., Noble, D., Seitzman, J., and Lieuwen, T. 2011. Measurements and analysis of turbulent consumption speeds of H2/CO mixtures. Combustion and Flame, 158, (8), 1602–1614.
  • Wang, J., Zhang, M., Huang, Z., Kudo, T., and Kobayashi, H. 2013. Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combustion and Flame, 160, (11), 2434–2441.
  • Zel’dovich, Y.B., and Frank-Kamenetskii, D. 1947. Turbulent and Heterogeneous Combustion, MMI, Moscow.
  • Zhang, M., Wang, J., Jin, W., Huang, Z., Kobayashi, H., and Ma, L. 2015. Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame. Combustion and Flame, 162, (5), 2087–2097.
  • Zhang, M., Wang, J., Wu, J., Wei, Z., Huang, Z., and Kobayashi, H. 2014a. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures. Int. J. Hydrogen Energy., 39, (10), 5176–5185.
  • Zhang, M., Wang, J., Xie, Y., Jin, W., Wei, Z., Huang, Z., and Kobayashi, H. 2013. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. Int. J. Hydrogen Energy., 38, (26), 11421–11428.
  • Zhang, M., Wang, J., Xie, Y., Wei, Z., Jin, W., Huang, Z., and Kobayashi, H. 2014b. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames. Exp. Thermal Fluid Sci., 52, (1), 288–296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.