223
Views
14
CrossRef citations to date
0
Altmetric
Articles

SLW modeling of radiation transfer in comprehensive combustion predictions

, , &
Pages 1392-1408 | Received 21 Sep 2017, Accepted 16 Jan 2018, Published online: 26 Mar 2018

References

  • Andersson, K., Johansson, R., Johnsson, F., and Leckner, B. 2008. Radiation intensity of propane-fired oxy-fuel flames: implications for soot formation. Energy Fuels, 22, 1535.
  • Chu, H., Consalvi, J.-L., Gu, M., and Liu, F. 2017. Calculations of radiative heat transfer in an axisymmetric jet diffusion flame at elevated pressures using different gas radiation models. J. Quant. Spectr. Rad. Transfer, 19, 12.
  • Coppalle, A., and Vervisch, P. 1983. The total emissivity of high-temperature flames. Combust. Flame, 49, 101.
  • Denison, M.K., and Webb, B.W. 1993a. A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers. ASME J. Heat Transfer, 115, 1004.
  • Denison, M.K., and Webb, B.W. 1993b. An absorption-line blackbody distribution function for efficient calculation of gas radiative transfer. J. Quant. Spectr. Rad. Transfer, 50, 499.
  • Denison, M.K., and Webb, B.W. 1995a. The spectral line-based weighted-sum-of-gray-gases model in non-isothermal non-homogeneous media. ASME J. Heat Transfer, 117, 359.
  • Denison, M.K., and Webb, B.W. 1995b. The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. ASME J. Heat Transfer, 117, 788.
  • Edwards, D.K., and Matavosian, R. 1984. Scaling rules for total absorptivity and emissivity of gases. ASME J. Heat Transfer, 106, 684.
  • Garten, B., Hunger, F., Messig, D., Stelzner, B., Trimis, D., and Hasse, C. 2015. Detailed radiation modeling of a particle-oxidation flame. Int. J. Therm. Sci., 87. 68. See also “Investigation of the Influence of Radiation Modeling in Gasification Systems,” Masters Thesis, Technische Universität Bergakademie Freiberg, 2013.
  • Krishnamoorthy, G., Sami, M., Orsino, S., Perera, A., Shahnam, M., and Huckaby, E.D. 2010. Radiation modeling in oxy-fuel combustion scenarios. Int. J. Comp. Fluid Dyn., 24, 69.
  • Modest, M.F. 1991. The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer. ASME J. Heat Transfer, 113, 650.
  • Modest, M.F., and Haworth, D.C. 2016. Radiative Heat Transfer in Turbulent Combustion Systems – Theory and Application, Springer, New York, p. 1.
  • Modest, M.F., and Zhang, H. 2002. The full-spectrum correlated-k distribution for thermal radiation from molecular gas mixtures with soot. ASME J. Heat Transfer, 124, 30.
  • Nguen, P.D., Danda, A., Embouazza, M., Gazdallah, M., Evrards, P., and Feldheim, V. 2012. Application of the spectral line-based weighted-sum-of-gray-gases model (SLWSGG) to the calculation of radiative heat transfer in steel reheating furnaces firing on low heating value gases. J. Phys., 369, 012008.
  • Patankar, S.V. 1980. Numerical Heat Transfer and Fluid Flow, Hemisphere, New York.
  • Pearson, J., Webb, B.W., Solovjov, V.P., and Ma, J. 2013. Updated correlation of the absorption-line blackbody distribution function for H2O based on the HITEMP2010 database. J. Quant. Spectr. Rad. Transfer, 128, 10.
  • Pearson, J., Webb, B.W., Solovjov, V.P., and Ma, J. 2014. Efficient representation of the absorption line blackbody distribution function for H2O, CO2, and CO at variable temperature, mole fraction, and total pressure. J. Quant. Spectr. Rad. Transfer, 138, 82.
  • Pierrot, L., Rivière, P., Soufiani, A., and Taine, J. 1999. A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases. J. Quant. Spectr. Rad. Transfer, 62, 609.
  • Rebola, A., and Azevedo, J.L.T. 2015. Modelling pulverized coal combustion using air and O2 recirculated gas as oxidant. Appl. Thermal. Eng., 83, 1.
  • Siegel, R., and Howell, J. 2002. Thermal Radiation Heat Transfer, Taylor and Francis, New York. p. 524.
  • Smith, T.F., Shen, Z.F., and Friedman, J.N. 1982. Evaluation of coefficients for the weighted sum of gray gases model. ASME J. Heat Transfer, 104, 602.
  • Solovjov, V.P., Andre, F., Lemonnier, D., and Webb, B.W. 2016. The generalized SLW model. J. Phys., 676, 012022.
  • Solovjov, V.P., Andre, F., Lemonnier, D., and Webb, B.W. 2017. The rank correlated SLW model of gas radiation in non-uniform media. J. Quant. Spectr. Rad Transfer, 197, 26.
  • Solovjov, V.P., Lemonnier, D., and Webb, B.W. 2011a. The SLW-1 model for efficient prediction of radiative transfer in high temperature gases. J. Quant. Spectr. Rad. Transfer, 112, 1205.
  • Solovjov, V.P., Lemonnier, D., and Webb, B.W. 2011b. SLW-1 modeling of radiative heat transfer in non-isothermal non-homogeneous gas mixtures with soot. ASME J. Heat Transfer, 133, 102701.
  • Solovjov, V.P., Lemonnier, D., and Webb, B.W. 2014. Extension of the exact SLW model to non-isothermal gaseous media. J. Quant. Spectr. Rad. Transfer, 143, 83.
  • Solovjov, V.P., and Webb, B.W. 2001. An efficient method for modeling radiative transfer in multicomponent gas mixtures with soot. ASME J. Heat Transfer, 123, 450.
  • Solovjov, V.P., and Webb, B.W. 2011. Global spectral methods in gas radiation: the exact limit of the SLW model and its relationship to the ADF and FSK methods. ASME J. Heat Transfer, 133, 042701.
  • Solovjov, V.P., Webb, B.W., and Andre, F. 2018. Radiative properties of gases, In F. Kulacki (Ed.), Handbook of Thermal Science and Engineering, Springer, New York, pp. 1–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.