347
Views
7
CrossRef citations to date
0
Altmetric
Articles

Experimental and numerical study of laminar flame extinction for syngas and syngas-methane blends

, , &
Pages 1455-1471 | Received 21 Sep 2017, Accepted 19 Jan 2018, Published online: 06 Apr 2018

References

  • Amantini, G., Frank, J.H., Smooke, M.D., and Gomez, A. 2007. Computational and experimental study of steady axisymmetric non-premixed methane counterflow flames. Combust. Theory Model., 11, 47–72.
  • Biofuel.org.uk. 2010. What is syngas. http://biofuel.org.uk/what-is-syngas.html.
  • Charest, M.R.J., Groth, C.P.T., and Gülder, Ö.L. 2010. A computational framework for predicting laminar reactive flows with soot formation. Combust. Theory Model., 14(6), 793–825.
  • Charest, M.R.J., Groth, C.P.T., and Gülder, Ö.L. 2011a. Effects of gravity and pressure on laminar co-flow methane-air diffusion flames at pressures from 1 to 60 atmospheres. Combust. Flame, 158(5), 860–875.
  • Charest, M.R.J., Groth, C.P.T., and Gülder, Ö.L. 2011b. Numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames. Combust. Flame, 158(10), 1933–1945.
  • Charest, M.R.J., Joo, H.I., Groth, C.P.T., and Gülder, Ö.L. 2011. Experimental and numerical study of soot formation in laminar ethylene diffusion flames at elevated pressures from 10 to 35 atm. Proc. Combust. Inst., 33, 549–557.
  • Ding, N., Arora, R., Norconk, M., and Lee, S.Y. 2011. Numerical investigation of diluent influence on flame extinction limits and emission characteristic of lean-premixed H2-CO (syngas) flames. Int. J. Hydrogen Energy, 36, 3222–3231.
  • Du, J., and Axelbaum, R.L. 1995. The effect of flame structure on soot-particle inception in diffusion flames. Combust. Flame, 100, 367–375.
  • Egolfopoulos, F.N., Cho, P., and Law, C.K. 1989. Laminar flame speeds of methane-air mixtures under reduced and elevated pressures. Combust. Flame, 76, 375–391.
  • Fleck, J.M., Griebel, P., Steinberg, A.M., Arndt, C.M., and Aigner, M. 2013. Auto-ignition and flame stabilization of hydrogen/natural gas/nitrogen jets in a vitiated cross-flow at elevated pressure. Int. J. Hydrogen Energy, 38(36), 16441–16452.
  • Gao, X., and Groth, C.P.T. 2006. A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows. Int. J. Comput. Fluid Dyn., 20(5), 349–357.
  • Gao, X., Northrup, S.A., and Groth, C.P.T. 2011. Parallel solution-adaptive method for two-dimensional non-premixed combusting flows. Prog. Comput. Fluid Dyn., 11(2), 76–95.
  • Goodwin, D.G. 2003. An open-source, extensible software suite for CVD process simulation. Chem. Vap. Deposition XVI EUROCVD, 14, 155–162.
  • Herzler, J., and Naumann, C. 2008. Shock tube study of the ignition of lean CO/H2 fuel blends at intermediate temperatures and high pressure. Combust. Sci. Tech., 180(10–11), 2015–2028.
  • Johnson, R.F., VanDine, A.C., Esposito, G.L., and Chelliah, H.K. 2015. On the axisymmetric counterflow flame simulations: is there an optimal nozzle diameter and separation distance to apply quasi one-dimensional theory? Combust. Sci. Tech., 187, 37–59.
  • Kéromnès, A., Metcalfe, W.K., Heufer, K.A., Donohoe, N., Das, A.K., Sung, C.-J., … Curran, H.J. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame, 160(6), 995–1011.
  • Korusoy, E., and Whitelaw, J.H. 2001. Opposed jets with small separations and their implications for the extinction of opposed flames. Exp. Fluids, 31, 111–117.
  • Mittal, G., Sung, C.J., Fairweather, M., Tomlin, A.S., Griffiths, J.F., and Hughes, K.J. 2007. Significance of the HO2 + CO reaction during the combustion of CO + H2 mixtures at high pressures. Proc. Combust. Inst., 31(1), 419–427.
  • Park, J., Kim, J.S., Chung, J.O., Yun, J.H., and Keel, S.I. 2009. Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames. Int. J. Hydrogen Energy, 34, 8756–8762.
  • Pellett, G.L., Isaac, K.M., Humphreys, W.M., Gartrell, L.R., Roberts, W.L., Dancey, C.L., and Northam, G.B. 1998. Velocity and thermal structure, and strain-induced extinction of 14 to 100% hydrogen-air counterflow diffusion flames. Combust. Flame, 112, 575–592.
  • Roe, P.L. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43, 357–372.
  • Sachdev, J.S., Groth, C.P.T., and Gottlieb, J.J. 2005. A parallel solution-adaptive scheme for predicting multi-phase core flows in solid propellant rocket motors. Int. J. Comput. Fluid Dyn., 19(2), 159–177.
  • Sarnacki, B.G., Esposito, G., Krauss, R.H., and Chelliah, H.K. 2012. Extinction limits and associated uncertainties of nonpremixed counterflow flames of methane, ethylene, propylene and n-butane in air. Combust. Flame, 159, 1026–1043.
  • Seshadri, K., and Williams, F.A. 1978. Laminar flow between parallel plates with injection of a reactant at high reynolds number. Int. J. Heat Mass Trans., 21, 251–253.
  • Shih, H.Y., and Hsu, J.R. 2011. A computational study of combustion and extinction of opposed-jet syngas diffusion flames. Int. J. Hydrogen Energy, 36, 15868–15879.
  • Slavinskaya, N., Braun-Unkhoff, M., and Frank, P. 2008. Reduced reaction mechanisms for methane and syngas combustion in gas turbines. J. Engin. Gas Turbines Power, 130, 1–6.
  • Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., … Qin, Z. 2000. GRI-Mech 3.0. http://www.me.berkeley.edu/grimech/.
  • Som, S., Ramirez, A.I., Hagerdorn, J., Saveliev, A., and Aggarwal, S.K. 2008. A numerical and experimental study of counterflow syngas flames at different pressures. Fuel, 87, 319–334.
  • Somerville, C., Youngs, H., Taylor, C., Davis, S.C., and Long, S.P. 2010. Feedstocks for lignocellulosic biofuels. Science, 329, 790–792.
  • Thiessen, S., Khalil, E., and Karim, G. 2010. The autoignition in air of some binary fuel mixtures containing hydrogen. Int. J. Hydrogen Energy, 35(18), 10013–10017.
  • Vagelopoulos, C.M., and Egolfopoulos, F.N. 1998. Direct experimental determination of laminar flame speeds. Proc. Combust. Inst., 27, 513–519.
  • Wang, W. 2014. Experimental and numerical investigation of structure and extinction limits of biofuels in laminar counterflow diffusion flames ( Unpublished master’s thesis). University of Toronto.
  • Weiss, J.M., and Smith, W.A. 1995. Preconditioning applied to variable and constant density flows. Aiaa J., 33(11), 2050–2057.
  • Williams, B.A. 2001. Sensitivity of calculated extinction strain rate to molecular formulation in nonpremixed counterflow flames. Combust. Flame, 124, 330–333.
  • Xia, F., and Axelbaum, R.L. 2013. Simplifying the complexity of diffusion flames through interpretation in C/O ratio space. Comp. Math. Applic., 65(10), 1625–1632.
  • Yu, G., Law, C.K., and Wu, C.K. 1986. Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition. Combust. Flame, 63, 339–347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.