225
Views
9
CrossRef citations to date
0
Altmetric
Articles

Combined mercury removal and low-temperature NH3-SCR OF NO with MnOx/TiO2 sorbents/catalysts

, &
Pages 1488-1499 | Received 21 Sep 2017, Accepted 31 Jan 2018, Published online: 20 Mar 2018

References

  • Carey, T.R., Hargrove, O.W., Jr., Richardson, C.F., Chang, R., and Meserole, F.B. 1998. Factors affecting mercury control in utility flue gas using activated carbon. J. Air & Waste Manage. Assoc., 48, 1166.
  • Cimino, S., Colonna, S., De Rossi, S., Faticanti, M., Lisi, L., Pettiti, I., and Porta, P. 2002. Methane combustion and CO oxidation on zirconia-supported La, Mn oxides and LaMnO3 perovskite. J. Catal., 205, 309.
  • Cimino, S., Lisi, L., and Tortorelli., M. 2016. Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning: effect of KCl poisoning. Chem. Eng. J., 283, 223.
  • Cimino, S., and Scala, F. 2016. Removal of elemental mercury by MnOx catalysts supported on TiO2 or Al2O3. Ind. Eng. Chem. Res., 55, 5133.
  • Cimino, S., Totarella, G., Tortorelli, M., and Lisi, L. 2017. Combined poisoning effect of K+ and its counter-ion (Cl− or NO3−) on MnOx/TiO2 catalyst during the low temperature NH3-SCR of NO. Chem. Eng. J., 330(1), 92.
  • Dumesic, J.A., Topsøe, N.Y., Topsøe, H., Chen, Y., and Slabiak, T. 1996. Kinetics of selective catalytic reduction of nitric oxide by ammonia over vanadia/titania. J. Catal., 163, 409.
  • Fang, D., Xie, J., Hu, H., Yang, H., He, F., and Fu, Z. 2015. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chem. Eng. J., 271, 23.
  • Forzatti, P. 2001. Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A: Gen., 222, 221.
  • Gallardo-Amores, J.M., Armaroli, T., Ramis, G., Finocchio, E., and Busca, G.A. 1999. Study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation. Appl. Catal. B Environ., 22(4), 249.
  • Granite, E.J., Pennline, H.W., and Hargis, R. 2000. Novel sorbents for mercury removal from flue gas. Ind. Eng. Chem. Res., 39, 1020.
  • He, C., Shen, B., Chen, J., and Cai, J. 2014. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environ. Sci. Technol., 48, 7891.
  • Ji, L., Sreekanth, P.M., Smirniotis, P.G., Thiel, S.W., and Pinto, N.G. 2008. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energy Fuels., 22, 2299.
  • Kantcheva, M. 2001. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. J. Catal., 204, 479.
  • Li, H., Wu, C.Y., Li, Y., and Zhang, J. 2012. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Appl. Catal. B Environ., 111-112, 381.
  • Li, J., Chen, J., Ke, R., Luo, C., and Hao, J. 2007. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 Catalysts. Catal. Commun., 8(12), 1896.
  • Liu, C., Shi, J.W., Gao, C., and Niu, C. 2016. Manganese oxide-based catalysts for low-tem- perature selective catalytic reduction of NOx with NH3: a review. Appl. Catal. A: Gen., 522, 54.
  • Manfroi, D.C., Anjos, A.D., Cavalheiro, A.A., Perazoli, L.A., Varela, J.A., and Zaghete, M.A. 2014. Titanate nanotubes produced from microwave-assisted hydrothermal synthesis: photocatalytic and structural properties. Ceram. Int., 40, 14483.
  • Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and Masxon, P. 2010. Global emissions of mercury to the atmosphere from anthropogenic source in 2005 and projections to 2020. Atm. Env., 44, 2487.
  • Pappas, D.K., Boningari, T., Boolchand, P., and Smirniotis, P.G. 2016. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature SCR of NOx by NH3. J. Catal., 334, 1.
  • Portzer, J.W., Albritton, J.R., Allen, C.C., and Gupta, R.P. 2004. Development of novel sorbents for mercury control at elevated temperatures in coal-derived syngas: results of initial screening of candidate materials. Fuel Process. Technol., 85, 621.
  • Poulston, S., Granite, E.J., Pennline, H.W., Myers, C.R., Stanko, D.P., Hamilton, H., Rowsell, L., Smith, A.W.J., Ilkenhans, T., and Chu, W. 2007. Metal sorbents for high temperature mercury capture from fuel gas. Fuel., 86, 2201.
  • Presto, A., and Granite, E.J. 2007. Impact of sulfur oxides on mercury capture by activated carbon. Environ. Sci. Technol., 41, 6579.
  • Presto, A., Granite, E.J., and Karash, A. 2007. Further investigation of the impact of sulfur oxides on mercury capture by activated carbon. Ind. Eng. Chem. Res., 46, 8273.
  • Qiao, S., Chen, J., Li, J., Qu, Z., Liu, P., Yan, N., and Jia, J. 2009. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/Alumina. Ind. Eng. Chem. Res., 2, 3317.
  • Reddy, B.M., Durgasri, N., Kumar, T.V., and Bhargava, S.K. 2012. Abatement of gas-phase mercury—recent developments. Catal. Rev., 54, 344.
  • Scala, F., Anacleria, C., and Cimino, S. 2013. Characterization of a regenerable sorbent for high temperature elemental mercury capture from flue gas. Fuel., 108, 13.
  • Scala, F., and Cimino, S. 2015. Elemental mercury capture and oxidation by a regenerable manganese-based sorbent: the effect of gas composition. Chem. Eng. J., 278, 134.
  • Smirniotis, P.G., Sreekanth, P.M., Pen, D.A., and Jenkins, R.G. 2006. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3. Ind. Eng. Chem. Res., 45, 6436.
  • Srivastava, R.K., Hall, R.E., Khan, S., Culligan, K., and Lani, B.W. 2005. Nitrogen oxides emission control options for coal-fired electric utility boilers. J. Air Waste Manage. Assoc., 55, 1367.
  • Tong, H., and Huang, Y. 2012. The effects of manganese precursors on Mn-based/TiO2 catalysts for catalytic reduction of NO with NH3. J. Air Waste Manage. Assoc., 62(3), 271.
  • Tsai, C.C., and Teng, H. 2004. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem. Mater., 16, 4352.
  • Wang, H., Zhou, S., Xiao, L., Wang, Y., Liu, Y., and Wu, Z. 2011. Titania nanotubes–a unique photocatalyst and adsorbent for elemental mercury removal. Catal. Today., 175, 202.
  • Wiatros-Motyka, M.M., Sun, C., Stevens, L.A., and Snape, C.E. 2013. High capacity Co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel., 109, 559.
  • Xie, J., Fang, D., He, F., Chen, J., Fu, Z., and Chen, X. 2012. Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature. Catal. Commun., 28, 77.
  • Xu, Y., Zhong, Q., and Liu, X. 2014. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature. J. Hazard. Mater., 283, 252.
  • Yang, S., Guo, Y., Yan, N., Qu, Z., Xie, J., Yang, C., and Jia, J. 2011. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures. J. Hazard. Mater., 186, 508.
  • Zhang, A., Zhang, Z., Chen, J., Sheng, W., Sun, L., and Xiang, J. 2015. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg° removal. Fuel Process. Technol., 135, 25.
  • Zhang, B., Liu, J., Zheng, C., and Chang, M. 2014. Theoretical study of mercury species adsorption mechanism on MnO2(110) surface. Chem. Eng. J., 256, 93.
  • Zhang, S., and Zhong., Q. 2013. Promotional effect of WO3 on O2− over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3. J. Mol. Catal. A: Chem., 373, 108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.