444
Views
19
CrossRef citations to date
0
Altmetric
Articles

Thermal performance analysis of a syngas-fuelled hybrid solar receiver combustor operated in the MILD combustion regime

ORCID Icon, , , &
Pages 2-17 | Received 21 Sep 2017, Accepted 16 Jan 2018, Published online: 06 Apr 2018

References

  • Bollettini, U., Breussin, F.N., and Weber, R. 2000. A study on scaling of natural gas burners. IFRF Combust. J., 200006 ISSN 1562-479X.
  • Cavaliere, A., and de Joannon, M. 2004. MILD combustion. Proc Energ. Combust., 30(4), 329–366.
  • Chinnici, A., Tian, Z.F., Lim, J.H., Nathan, G.J., and Dally, B.B. 2017a. Comparison of system performance in a hybrid solar receiver combustor operating with MILD and conventional combustion. Part I: solar-only and combustion-only employing conventional combustion. Sol. Energy, 147, :489–503.
  • Chinnici, A., Tian, Z.F., Lim, J.H., Nathan, G.J., and Dally, B.B. 2017b. Comparison of system performance in a hybrid solar receiver combustor operating with MILD and conventional combustion. Part II: effect of the combustion mode. Sol. Energy, 147, :479–488.
  • de Joannon, M., Chinnici, A., Sabia, P., and Ragucci, R. 2012. Optimal post-combustion conditions for the purification of CO2-rich exhaust streams from non-condensable reactive species. Chem. Eng. J., 211–212, 318–326.
  • Di Nardo, A., Calchetti, G., and Mongiello, C. 2011. Design, and simulation of a trapped-vortex combustion chamber for gas turbine fed by syngas. Proceedings of Italian Combustion Institute (XXXIV Meeting), Rome, Italy.
  • Evans, M., Medwell, P., and Tian, Z.F. 2015. Modeling lifted jet flames in a heated coflow using an optimized Eddy dissipation concept model. Combust. Sci. Technol., 187(7), 1093–1109.
  • Fossum, M., and Beyer, R.V. 1998. Co-combustion: Biomass Fuel Gas and Natural Gas. SYNTEF Energy Research Report 82-594-1296-9.
  • Frassoldati, A., Faravelli, T., and Ranzi, E. 2006. A wide range modelling study of NOx formation and nitrogen chemistry in hydrogen combustion. Int. J. Hydrogen Energ, 31(15), 2310–2328.
  • Guo, P., Saw, W.L., Van Eyk, P.J., Stechel, E.B., Ashman, P.J., and Nathan, G.J. 2017. System optimisation for Fischer-Tropsch liquid fuels production via solar hybridized dual fluidized bed gasification of solid fuels. Energ. Fuel, 31(2), 2033–2043.
  • Hinkley, J.T., McNaughton, R.B., Pye, J., Saw, W.L., and Stechel, E.B. 2016. The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis. AIP Conf. Proc., 1734, 120003.
  • Johansson, L.N., Marchionna, N.R., Matthews, S.C., and Weniger, B.Z. 1999. Heat engine heater assembly. U.S. Patent 5884481.
  • Kamali, R., Mousavi, S.M., Binesh, A.R., and Abolfazli-Esfahani, J. 2017. Large eddy simulation of the flameless oxidation in the IFRF furnace with varying inlet conditions. Int. J. Spray Combust, 9(2), 102–115.
  • Kolb, G.J. 1998. Economic evaluation of solar-only and hybrid power towers using molten-salt technology. Sol. Energy, 62(1), 51–61.
  • Kreith, F., and Goswami, D.Y. 2007. Handbook of Energy Management and End Use Efficiency, CRC Press, Boca Raton, FL.
  • Lim, J.H., Chinnici, A., Dally, B.B., and Nathan, G.J. 2016d. Assessment of the potential benefits and constraints of a hybrid solar receiver and combustor operated in the MILD combustion regime. Energy, 116(Part 1), 735–745.
  • Lim, J.H., Hu, E., and Nathan, G.J. 2016b. Impact of start-up and shut-down losses on the economic benefit of an integrated hybrid solar cavity receiver and combustor. Appl. Energ., 164, 10–20.
  • Lim, J.H., Nathan, G.J., Dally, B.B., and Chinnici, A. 2016c. Techno-economic assessment of a hybrid solar receiver and combustor. AIP Conf. Proc., 1734, 070020.
  • Lim, J.H., Nathan, G.J., Hu, E., and Dally, B.B. 2016a. Analytical assessment of a novel hybrid solar tubular receiver and combustor. Appl. Energ., 162, 298–307.
  • Mancini, M., Schwoppe, P., Weber, R., and Orsino, S. 2007. On mathematical modelling of flameless combustion. Combust. Flame, 150(1–2), 54–59.
  • Mehos, M.S., Anselmo, K.M., Moreno, J.B., Andraka, C.E., Rawlinson, K.S., Corey, J., and Bohn, M.S. 2004. Combustion system for hybrid solar fuel receiver. U.S. Patent 6739136 B2.
  • Mi, J., Wang, F., Li, P., and Dally, B.B. 2012. Modified vitiation in a moderate or intense low-oxygen dilution (MILD) combustion furnace. Energ Fuel, 26, 265–277.
  • Moore, J., and Apt, J. 2013. Can hybrid solar–fossil power plants mitigate CO2 at lower cost than PV or CSP? Environ. Sci. Technol., 47(6), 2487–2493.
  • Mosca, G., Lupant, D., and Lybaert, P. 2017. Effect of increasing load on the MILD combustion of COG and its blend in a 30-kW furnace using low air preheating temperature. Energy Procedia, 120, 262–269.
  • Muller, F., Pozivil, P., Van Eyk, P., Villarazo, A., Haueter, A., Wieckert, C., Nathan, G.J., and Steinfeld, A. 2017. A pressurized high-flux solar reactor for the efficient thermochemical gasification of carbonaceous feedstock. Fuel, 193, 432–443.
  • Nathan, G.J., Battye, D.L., and Ashman, P.J. 2014. Economic evaluation of a novel fuel-saver hybrid combining a solar receiver with a combustor for a solar power tower. Appl. Energ., 113, 1235–1243.
  • Nathan, G.J., Dally, B.B., Alwahabi, Z.T., Van Eyk, P.J., Jafarian, M., and Ashman, P.J. 2017. Research challenges in combustion and gasification arising from emerging technology employing directly irradiated concentrating solar thermal radiation. Proc Combust Inst., 36(2), 2055–2074.
  • Nathan, G.J., Dally, B.B., Ashman, P.J., and Steinfeld, A. 2013. A hybrid receiver-combustor. US Patent 2015/0054284, A.R.I.P. Ltd, Editor.
  • Nathan, G.J., Jafarian, M., Dally, B.B., Saw, W.L., Ashman, P.J., Hu, E., and Steinfeld, A. 2018. Solar thermal hybrids for combustion power plant: A growing opportunity. Proc Energ. Combust., 64, 4–28.
  • Ordorica-Garcia, G., Delgado, A.V., and Garcia, A.F. 2011. Novel integration options of concentrating solar thermal technology with fossil-fuelled and CO2 capture processes. Energy Procedia, 4, 809–816.
  • Percival, W.H., and Wells, D.N. 1986. Hybrid solar/combustion powered receiver. U.S. Patent 4602614.
  • Peterseim, J.H., White, S., Tadros, A., and Hellwig, U. 2013. Concentrated solar power hybrid plants, which technologies are best suited for hybridisation? Renew Energ, 57, 520–532.
  • Riahi, S., Roekaerts, D.J.E.M., and Lupant, D. 2013. Numerical comparative study of heat transfer in flameless and conventional combustion in a 30-kW furnace. Proceedings of the European Combustion Meeting, Lund, Sweden.
  • Shabanian, S.R., Derudi, M., Rahimi, M., Frassoldati, A., Cuoci, A., and Faravelli, T. 2011. Experimental and numerical analysis of syngas mild combustion. Proceedings of Italian Combustion Institute (XXXIV Meeting).
  • Sheu, E.J., Mitsos, A., Eter, A.A., Mokheimer, E.M.A., Habib, M.A., and Al-Qutub, A. 2012. A review of hybrid solar–fossil fuel power generation systems and performance metrics. J. Sol. Energ., 134(4), 041006.
  • Tsuji, H., Gupta, A.K., Hasegawa, T., Katsuki, M., Kishimoto, K., and Morita, M. 2003. High Temperature Air Combustion, CRC Press, Boca Paton.
  • Tu, Y., Liu, H., Chen, S., Liu, Z., Zhao, H., and Zheng, C. 2015. Effects of furnace chamber shape on the MILD combustion of natural gas. Appl. Therm. Eng., 76, 64–75.
  • Van Eyk, P., Ashman, P.J., and Nathan, G.J. 2016. Effect of high-flux solar irradiation on the gasification of coal in a hybrid entrained-flow reactor. Energ. Fuel, 30(6), 5138–5147.
  • Weber, R., Orsino, S., Lallemant, N., and Verlaan, A. 2000. Combustion of natural gas with high-temperature air and large quantities of flue gas. Proc Combust Inst, 28, 1315–1321.
  • Weber, R., Smart, J.P., and Kamp, W. 2005. On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc Combust Inst, 30(2), 2623–2629.
  • Wu, S., Xiao, L., Cao, Y., and Li, Y. 2010. Convection heat loss from cavity receiver in parabolic dish solar thermal power system: a review. Sol. Energy, 84, 1342–1355.
  • Yeh, K.C., Hughes, G., and Lovegrove, K. 2005. Modelling the convective flow in solar thermal receivers. In: Proceedings of the 43rd Conference of the Australia and New Zealand Solar Energy Society (ANZSES), Dunedin, New Zealand.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.