429
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical study on the importance of the turbulent inlet boundary condition and differential diffusion in a turbulent H2/N2/air jet diffusion flame

, &
Pages 109-125 | Received 21 Sep 2017, Accepted 22 Jan 2018, Published online: 06 Apr 2018

References

  • Brown, P.N., and Hinmarsh, A.C. 1989. Reduced storage matrix methods in stiff ode systems. J. Comput. Appl. Math., 31, 40.
  • Cristopher, J., 2015. OpenFOAM User Guide. [Online] Available at: http://www.openfoam.org/docs/OpenFOAM%Documentation
  • D’Ausilio, A., Stankovic, I., and Merci, B. 2017. Study of a turbulent nitrogen-diluted hydrogen-air diffusion flame through large eddy simulations coupled with a first order conditional moment closure method. International Symposium on Advances in Computational Heat Transfer, Naples, Italy, 1783.
  • Davidson, L. 1997. LES of recirculating flow without any homogenous direction: a dynamic one-equation subgrid model. 2nd International Symposium on Turbulence Heat and Mass Transfer, Delft, Netherlands, 481.
  • Ertesvag, I.S., and Magnussen, B.F. 2000. The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol., 159, 213.
  • Forkel, H., and Janicka, J. 2000. Large eddy simulation of a turbulent hydrogen diffusion flame. Flow Turbulence Combustion, 65, 163.
  • Garmory, A., and Mastorakos, E. 2011. Capturing localised extinction in Sandia Flame F with LES-CMC. Proc. Combust. Inst., 33, 1673.
  • Garmory, A., and Mastorakos, E. 2013. Sensitivity analysis of LES-CMC predictions of piloted jet flames. Int. J. Heat Fluid Flow, 39, 53.
  • Garmory, A., and Mastorakos, E. 2015. Numerical simulation of oxy-fuel jet flames using unstructured LES-CMC. Proc. Combust Inst., 35, 1207.
  • Johnson, A.W., and Sreenivasan, K.R. 1993. The thickness distribution of OH regions in a turbulent diffusion flame. Combust. Sci. Technol., 89, 1.
  • Klein, M., Sadiki, A., and Janicka, J. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys., 186 (2), 652.
  • Klimenko, A.Y., and Bilger, R.W. 1999. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci., 25, 595.
  • Kornev, N., and Hassel, E. 2007. Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions. Commun. Numer. Methods. Eng., 23, 35.
  • Li, J., Zhao, Z., Kazakov, A., and Dryer, F. 2004. An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet., 36, 566.
  • Lund, T., Wu, X., and Squires, D. 1998. Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys., 140, 233.
  • Maragkos, G., Rauwoens, P., and Merci, B. 2015. Assessment of a methodology to include differential diffusion in numerical simulations of a turbulent flame. Int. J. Hydrogen Energy, 40, 1212.
  • Meier, W., Prucker, S., Chao, M.H., and Stricker, W. 1996a. Characterization of a turbulent H2/N2/air jet diffusion flames by single-pulse spontaneous Raman scattering. Combust. Sci. Technol., 118, 293.
  • Meier, W., Vydorov, A.O., Bergmann, V., and Stricker, V. 1996b. Simultaneous Raman/LIF measurement of major species and NO in turbulent H2/air diffusion flames. J. Appl. Phys., 63, 79.
  • O’Brien, E.E., and Jiang, T.L. 1991. The conditional dissipation rate of an initial binary scalar in homogeneous turbulence. Phys. Fluids, 3, 3121.
  • Panjwani, B., Ertesvag, A., Gruber, A., and Rian, K.E. 2010. Turbulence combustion closure model based on the eddy dissipation concept for large eddy simulation. Adv. Fluid Mech. VIII, 69, 27.
  • Pera, C., Reveillon, J., Vervisch, L., and Domingo, P. 2006. Modeling subgrid scale mixture fraction variance in LES of evaporating spray. Combust. Flame, 146, 635.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK, Chap. 3, pp. 213–214.
  • Pfuderer, D.G., Neuber, A.A., Fruchtel, G., Hassel, E. P., Janicka, J. 1996. Turbulence modulation in jet diffusion flames: modeling and experiments. Combust. Flame, 106, 302.
  • Pitsch, H. 2000. Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combust. Flame, 123, 358.
  • Pitsch, H., Chen, M., and Peters, N. 1998. Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames. Twenty-Seventh Symposium (International) on Combustion, 1, 1057.
  • Poinsot, T., and Veynante, T. 2005. Theoretical and Numerical Combustion, 2, Institut de Mecanique des Fluides Toulose, Edwards, AU, Chap. 4, pp. 141–142.
  • Pope, S.B. 2000. Turbulent Flows, 1, University of Cambridge, Cambridge, Chap. 5, pp. 105–106.
  • Schmitt, T., Mery, Y., Boileau, M., and Candel, S. 2011. Large-eddy simulation of oxygen/methane flames under transcritical conditions. Proc. Combust. Inst., 33, 1383.
  • Schumann, U. 1975. Subgrid scale model for finite differences simulation of turbulent flows in plane channels and anuli. J. Comput. Phys., 18, 376.
  • Stankovic, I., Mastorakos, E., and Merci, B. 2013. LES-CMC simulations of different auto-ignition regimes of hydrogen in a hot turbulent air co-flow. Flow Turbulence Combust., 90, 583.
  • Zhang, H., and Mastorakos, E. 2016. Prediction of global extinction conditions and dynamics in swirling non-premixed flames using LES-CMC. Flow Turbulence Combust., 96, 863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.