153
Views
18
CrossRef citations to date
0
Altmetric
Articles

Physical and mathematical modeling of interaction of detonation waves in mixtures of hydrogen, methane, silane, and oxidizer with clouds of inert micro- and nanoparticles

&
Pages 275-283 | Received 20 Oct 2017, Accepted 27 Mar 2018, Published online: 09 Apr 2018

References

  • Bedarev, I.A., and Fedorov, A.V. 2006. Comparative analysis of three mathematical models of hydrogen ignition. Combust. Explos. Shock Waves, 42(1), 19.
  • Borisov, A.A., Gel’fand, B.E., Gubin, S.A., and Kogarko, S.M. 1975. Effect of inert solid particles on detonation of a combustible gas mixture. Combust. Explos. Shock Waves., 11(6), 774.
  • Britten, J.A., Tong, J., and Westbrook, C.K. 1990. A numerical study of silane combustion. Proc. Combust. Inst., 23, 195.
  • Fedorov, A.V., Fomin, P.A., Fomin, V.M., Tropin, D.A., and Chen, J.-R. 2012. Mathematical Analysis of Detonation Suppression by Inert Particles, Kao Tech Publishing, Kaohsiung, Taiwan. 143. ISBN 978-986-88423-0-4.
  • Fedorov, A.V., and Fomin, V.M. (1997) Detonation of gas mixtures with inert solid particles. IUTAM Symposium on Combustion in Supersonic Flows. Kluwer Academic Publishers, 147.
  • Fedorov, A.V., and Tropin, D.A. 2013. Modeling of detonation wave propagation through a cloud of particles in a two-velocity two-temperature formulation. Combust. Expl. Shock Waves, 49(2), 178. doi:10.1134/S0010508213020081.
  • Fedorov, A.V., Tropin, D.A., and Bedarev, I.A. 2010. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles. Combust. Explos. Shock Waves, 46(3), 332. doi:10.1007/s10573-010-0046-0.
  • Filippov, A.V., and Rosner, D.E. 2000. Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime. Int. J. Heat Mass Transf., 43(1), 127.
  • Fomin, P.A., and Chen, J.-R. 2009. Effect of chemically inert particles on thermodynamic characteristics and detonation of a combustible gas. Combust. Sci. Technol., 181(8), 1038.
  • Fomin, P.A., Fedorov, A.V., and Chen, J.R. (2016). Calculation of detonation characteristics of silane-air mixtures. Proceedings of 11th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (11th ISHPMIE). 74.
  • Kazakov, Y.V., Fedorov, A.V., and Fomin, V.M. 1989. Normal detonation regimes in relaxing media. Combust. Explos. Shock Waves, 25(1), 109.
  • Khmel, T.A., and Fedorov, A.V. (2017). Physical and mathematical model of detonation in aluminum gas suspensions with regard for transition processes of nanosized particle flow, heat transfer and combustion. Proceedings of the XXV Conference on High-Energy Processes in Condensed Matter (HEPCM 2017): Dedicated to the 60th anniversary of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS (Russia, Novosibirsk, 5–9 Jun., 2017): AIP Conference Proceedings. 1893 (1), 030144.
  • Nikolaev, Y.A., Vasil’ev, A.A., and Ul’yanitskii, V.Y. 2003. Gas detonation and its application in engineering and technologies (Review). Combust. Explos. Shock Waves, 39(4), 22.
  • Papalexandris, M.V. 2004. Numerical simulation of detonations in mixtures of gases and solid particles. J. Fluid Mech, 507, 95.
  • Shafiee, H., and Djavareshkian, M.H. 2014. CFD simulation of particles effects on characteristics of detonation. Int. J. Comput. Theory Eng., 6, 466.
  • Sundaram, D.S., Yang, V., and Zarko, V.E. 2015. Combustion of nano aluminum particles (Review). Combust. Explos. Shock Waves, 51(2), 173.
  • Tien, J.H., and Stalker, R.J. 2002. Release of chemical energy by combustion in a supersonic mixing layer of hydrogen and air. Combust. Flame., 130, 329.
  • Tropin, D.A., and Fedorov, A.V. 2014. Mathematical modeling of detonation wave suppression by cloud of chemically inert solid particles. Combust. Sci. Technol., 186(10–11), 1690. doi:10.1080/00102202.2014.935637.
  • Tropin, D.A., and Fedorov, A.V. 2015. Physicomathematical modeling of ignition and combustion of silane in transient and reflected shock waves. Combust. Explos. Shock Waves, 51(4), 431.
  • Ul’yanitskii, V.Y. 1981. Galloping mode in a gas detonation. Combust. Explos. Shock Waves, 17(1), 118.
  • Westbrook, C.K., and Urtiew, P.A. 1983. Use of chemical kinetics to predict critical parameters of gaseous detonations. Combust. Explos. Shock Waves, 19(6), 753.
  • Wolinski, M., and Wolanski, P. 1987. Gaseous detonation processes in presence of inert particles. Archivum Combustion, 7(3/4), 353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.