586
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

An experimental study: laminar flame speed sensitivity from spherical flames in stoichiometric CH4–air mixtures

ORCID Icon, &
Pages 1594-1613 | Received 14 Jul 2017, Accepted 29 Mar 2018, Published online: 16 Apr 2018

References

  • Aung, K.T., Tseng, L.K., Ismail, M.A., and Faeth, G.M. 1995. Response to comment by S.C. Taylor and D.B. Smith on “laminar burning velocities and Markstein numbers of hydrocarbon/air flames”. Combust. Flame., 102, 526.
  • Bechtold, J.K., Cui, C., and Matalon, M. 2005. The role of radiative losses in self-extinguishing and self-wrinkling flames. Proc. Combust. Inst., 30, 177.
  • Bosschaart, K.J., and De Goey, L.P.H. 2004. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame., 136, 261.
  • Bradley, D., Gaskell, P.H., and Gu, X.J. 1996. Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combust. Flame., 104, 176.
  • Burke, M.P., Chen, Z., Ju, Y., and Dryer, F.L. 2009. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust. Flame., 156, 771.
  • Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal., PAMI-8, 679.
  • Chen, Z. 2011. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame., 158, 291.
  • Chen, Z. 2015. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: methane/air at normal temperature and pressure. Combust. Flame., 162, 2442.
  • Chen, Z., Qin, X., Ju, Y., Zhao, Z., Chaos, M., and Dryer, F.L. 2007. High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures. Proc. Combust. Inst., 31, 1215.
  • Chong, C.T., and Hochgreb, S. 2011. Measurements of laminar flame speeds of acetone/methane/air mixtures. Combust. Flame., 158, 490.
  • Clavin, P. 1985. Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci., 11, 1.
  • Coppens, F.H.V., De Ruyck, J., and Konnov, A.A. 2007. Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane + air flames. Exp. Therm. Fluid Sci., 31, 437.
  • De Vries, J., Lowry, W.B., Serinyel, Z., Curran, H.J., and Petersen, E.L. 2011. Laminar flame speed measurements of dimethyl ether in air at pressures up to 10 atm. Fuel., 90, 331.
  • Dong, Y., Vagelopoulos, C.M., Spedding, G.R., and Egolfopoulos, F.N. 2002. Measurement of laminar flame speeds through digital particle image velocimetry: mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium. Proc. Combust. Inst., 29, 1419.
  • Egolfopoulos, F.N. 1994. Geometric and radiation effects on steady and unsteady strained laminar flames. Proc. Combust. Inst., 25, 1375.
  • Egolfopoulos, F.N., Hansen, N., Ju, Y., Kohse-Höinghaus, K., Law, C.K., and Qi, F. 2014. Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog. Energy Combust. Sci., 43, 36.
  • Elia, M., Ulinski, M., and Metghalchi, M. 2000. Laminar burning velocity of methane–air–diluent mixtures. J. Eng. Gas. Turb. Power., 123, 190.
  • Frankel, M.L., and Sivashinsky, G.I. 1983. On effects due to thermal expansion and Lewis number in spherical flame propagation. Combust. Sci. Technol., 31, 131.
  • Gu, X.J., Haq, M.Z., Lawes, M., and Woolley, R. 2000. Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame., 121, 41.
  • Halter, F., Chauveau, C., Djebaïli-Chaumeix, N., and Gökalp, I. 2005. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures. Proc. Combust. Inst., 30, 201.
  • Hassan, M.I., Aung, K.T., and Faeth, G.M. 1998. Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combust. Flame., 115, 539.
  • He, Y., Wang, Z., Yang, L., Whiddon, R., Li, Z., Zhou, J., and Cen, K. 2012. Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation. Fuel., 95, 206.
  • Heath, M.D., Sarkar, S., Sanocki, T., and Bowyer, K.W. 1997. A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Trans. Pattern Anal., 19, 1338.
  • Hu, E., Huang, Z., He, J., Jin, C., and Zheng, J. 2009. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int. J. Hydrogen Energy., 34, 4876.
  • Jayachandran, J., Lefebvre, A., Zhao, R., Halter, F., Varea, E., Renou, B., and Egolfopoulos, F.N. 2015. A study of propagation of spherically expanding and counterflow laminar flames using direct measurements and numerical simulations. Proc. Combust. Inst., 35, 695.
  • Jayachandran, J., Zhao, R., and Egolfopoulos, F.N. 2014. Determination of laminar flame speeds using stagnation and spherically expanding flames: molecular transport and radiation effects. Combust. Flame., 161, 2305.
  • Kelley, A.P., Jomaas, G., and Law, C.K. 2009. Critical radius for sustained propagation of spark-ignited spherical flames. Combust. Flame., 156, 1006.
  • Kelley, A.P., and Law, C.K. 2009. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust. Flame., 156, 1844.
  • Kline, S.J., and McClintock, F. 1953. Describing uncertainties in single-sample experiments. Mech. Eng., 75, 3.
  • Lowry, W., De Vries, J., Krejci, M., Petersen, E., Serinyel, Z., Metcalfe, W., Curran, H., and Bourque, G. 2011. Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures. J. Eng. Gas. Turb. Power., 133, 091501.
  • Markstein, G.H. 1951. Experimental and theoretical studies of flame-front stability. J. Aeronaut. Sci., 18, 199.
  • Mazas, A.N., Fiorina, B., Lacoste, D.A., and Schuller, T. 2011. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combust. Flame., 158, 2428.
  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J. 2013. A hierarchical and comparative kinetic modeling study of C1 − C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 45, 638.
  • Ouimette, P., and Seers, P. 2009. Numerical comparison of premixed laminar flame velocity of methane and wood syngas. Fuel., 88, 528.
  • Ravi, S., Sikes, T.G., Morones, A., Keesee, C.L., and Petersen, E.L. 2015. Comparative study on the laminar flame speed enhancement of methane with ethane and ethylene addition. Proc. Combust. Inst., 35, 679.
  • Ronney, P.D., and Sivashinsky, G.I. 1989. A theoretical study of propagation and extinction of nonsteady spherical flame fronts. SIAM J. Appl. Math., 49, 1029.
  • Rozenchan, G., Zhu, D.L., Law, C.K., and Tse, S.D. 2002. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 ATM. Proc. Combust. Inst., 29, 1461.
  • Santner, J., Haas, F.M., Ju, Y., and Dryer, F.L. 2014. Uncertainties in interpretation of high pressure spherical flame propagation rates due to thermal radiation. Combust. Flame., 161, 147.
  • Selle, L., Poinsot, T., and Ferret, B. 2011. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner. Combust. Flame., 158, 146.
  • Tahtouh, T., Halter, F., and Mounaïm-Rousselle, C. 2009. Measurement of laminar burning speeds and Markstein lengths using a novel methodology. Combust. Flame., 156, 1735.
  • Tanoue, K., Shimada, F., and Hamatake, T. 2003. The effects of flame stretch on outwardly propagating flames. JSME Int J., Ser. B., 46, 416.
  • Taubin, G. 1991. Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal., 13, 1115.
  • Taylor, S.C. 1991. Burning velocity and the influence of flame stretch. PhD thesis. Department of Fuel and Energy University of Leeds, UK.
  • Vagelopoulos, C.M., and Egolfopoulos, F.N. 1998. Direct experimental determination of laminar flame speeds. Proc. Combust. Inst., 27, 513.
  • Van Maaren, A., Thung, D.S., and De Goey, L.R.H. 1994. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol., 96, 327.
  • Varea, E., Modica, V., Vandel, A., and Renou, B. 2012. Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: application to laminar spherical flames for methane, ethanol and isooctane/air mixtures. Combust. Flame., 159, 577.
  • Wang, Z.H., Yang, L., Li, B., Li, Z.S., Sun, Z.W., Aldén, M., Cen, K.F., and Konnov, A.A. 2012. Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combust. Flame., 159, 120.
  • Wu, F., Liang, W., Chen, Z., Ju, Y., and Law, C.K. 2015. Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames. Proc. Combust. Inst., 35, 663.
  • Xiouris, C., Ye, T., Jayachandran, J., and Egolfopoulos, F.N. 2016. Laminar flame speeds under engine-relevant conditions: uncertainty quantification and minimization in spherically expanding flame experiments. Combust. Flame., 163, 270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.