395
Views
8
CrossRef citations to date
0
Altmetric
Articles

Electric field influence on the stability and the soot particles emission of a laminar diffusion flame

, , &
Pages 325-338 | Received 30 Oct 2017, Accepted 17 Apr 2018, Published online: 01 May 2018

References

  • Arai, M., Sato, H., and Amagai, K. 1999. Gravity effects on stability and flickering motion of diffusion flames. Combust. Flame, 118, 293.
  • Booth Ben, B.N. 2015. Black carbon and atmospheric feedbacks. Nature, 519, 167.
  • Bradley, D. 1986. The effects of electric fields on combustion processes. In Weinberg, F.J., editor. Advanced Combustion Methods, Academic press London, pp. 331–395.
  • Calcote, H.F. 1962. Ion production and recombination in flames. Proc. Combust. Instit, 8, 184.
  • Calcote, H.F. 1963. Ion and electron profiles in flames. Proc. Combust. Instit, 9, 622.
  • Dalzell, W.H., and Sarofim, A.F.J. 1969. Optical constants of soot and their application to heat-flux calculations. Heat Transfer, 91, 100.
  • Dashevskii, V., and Fialkov, B. 1993. Free-oscillation regime of diffusional gas combustion in an electric field focused on the preignition zone. Fizica Goreniya I Vzryva, 29(3), 105.
  • Duan, H., Wu, X., Sun, T., Liu, B., Fang, J., Li, C., and Gao, Z. 2015. Effects of electric field intensity and distribution on flame propagation speed of CH4/O2/N2 flames. Fuel, 158, 80.
  • Fialkov, A.B. 1997. Investigations on ions in flames. Prog. Energy Combust. Sci, 23, 399.
  • Hoinghaus, K.K., and Jeffreis, J.B. 2002. Applied Combustion Diagnostics, Taylor and Francis ed., CRC Press New York.
  • Jiang, X., and Luo, K.H. 2000. Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc. Combust. Instit, 31, 1989.
  • Kaplan, C.R., Shaddix, C.R., and Smyth, K.C. 1996. Computations of enhanced soot production in time-varying CH4/air diffusion flames. Combust. Flame, 106, 392–405.
  • Karnani, S., and Dunn-Rankin, D. 2015. Detailed characterization of DC electric field effects on small non-premixed flames. Combust. Flame, 162, 2865.
  • Kim, M.K., Chung, S.H., and Kim, H.H. 2011. Effect of AC electric fields on the stabilization of premixed bunsen flames. Proc. Combust. Instit, 33, 1137.
  • Kono, M., Carleton, F.B., Jones, A.R., and Weinberg, F.J. 1989. The effects of non-steady electric fields on sooting flames. Combust. Flame, 78, 357–364.
  • Kuhl, J., Seeger, T., Zigan, L., Will, S., and Leipertz, A. 2017. On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields. Combust. Flame, 176, 391–399.
  • Lawton, J., and Weinberg, F.J. 1969. Electrical Aspects of Combustion, Clarendon Press, Oxford.
  • Li, C., Wu, X., Li, Y., and Wei, X. 2017. Experimental study of positive and negative DC electric fields in lean premixed spherically expanding flames. Fuel, 193, 22.
  • Marcum, S.D., and Ganguly, B.N. 2005. Electric-field-induced flame speed modification. Combust. Flame, 143, 27.
  • Ohisa, H., Kimura, I., and Horisawa, H. 1999. Control of soot emission of a turbulent diffusion flame by DC or AC corona discharges. Combust. Flame, 116, 653.
  • Park, D.G., Choi, B.C., Cha, M.S., and Chung, S.H. 2014. Soot reduction under DC electric fields in counter flow non premixed laminar ethylene flames. Combust. Sci. Technol., 186, 644.
  • Park, D.G., Chung, S.H., and Cha, M.S. 2016. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields. Combust. Flame, 168, 138.
  • Park, D.G., Chung, S.H., and Cha, M.S. 2017. Visualization of ionic wind in laminar jet flames. Combust. Flame, 184, 246.
  • Pascal, M., et al. 2016. An analysis of the health benefits of alternative scenarios of improved air quality in mainland France. Bull Epidemiol. Hebd., 26–27, 430.
  • Saito, M., Arai, T., and Arai, M. 1999. Control of soot emitted from acetylene diffusion flames by applying an electric field. Combust. Flame, 119, 356.
  • Shaddix, C.R., Harrington, J.E., and Smyth, K.C. 1994. Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combust. Flame, 99, 723.
  • Speelman N., Kiefer M., Markus D., Maas U., de Goey L.P.H.,van Oijen J.A. (2015) Validation of a novel numerical model for the electric currents in burner-stabilized methane–air flames. Proc. Comb. Inst, 35, 847.
  • Wang, Y., Nathan, G.J., Alwahabi, Z.T., King, K.D., Ho, K., and Yao, Q. 2010. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames. Combust. Flame, 157, 1308–1315.
  • Weinberg, F., Carleton, F., and Dunn-Rankin, D. 2008. Electric field-controlled mesoscale burners. Combust. Flame, 152, 186.
  • Won, S.H., Cha, M.S., Park, C.S., and Chung, S.H. 2007. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets. Proc. Combust. Instit., 31, 963.
  • Xie, L., Kishi, T., and Kono, M. 1992. Investigation on the effect of electric fields on soot formation and flame structure of diffusion flames. Proc. Combust. Instit, 24, 1059–1066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.