262
Views
10
CrossRef citations to date
0
Altmetric
Articles

Heat flux and flow topology statistics in oblique and head-on quenching of turbulent premixed flames by isothermal inert walls

, ORCID Icon, &
Pages 353-381 | Received 31 Oct 2017, Accepted 18 Apr 2018, Published online: 08 May 2018

References

  • Alshaalan, T.M., and Rutland, C.J. 1998. Turbulence, scalar transport, and reaction rates in flame-wall interaction. Proc. Combust. Inst., 27, 793.
  • Alshaalan, T.M., and Rutland, C.J. 2002. Wall heat flux in turbulent premixed reacting flow. Combust. Sci. Technol., 174, 135.
  • Blackburn, H., Mansour, N., and Cantwell, B. 1996. Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech., 301, 269.
  • Bruneaux, G., Akselvoll, K., Poinsot, T., and Ferziger, J.H. 1996. Flame-wall interaction simulations in a turbulent channel flow. Combust. Flame, 107, 27.
  • Bruneaux, G., Poinsot, T., and Ferziger, J.H. 1997. Premixed flame-wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid. Mech., 349, 191.
  • Chacin, J., and Cantwell, B. 2000. Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech., 404, 87.
  • Chakraborty, N., and Swaminathan, N. 2007. Influence of Damköhler number on turbulence–scalar interaction in premixed flames, part I: Physical insight. Phys. Fluids, 19, 045103.
  • Chakraboty, N., and Cant, S. 2004. Unsteady effects of strain rate and curvature on turbulent premixed flames in an inlet–outlet configuration. Combust. Flame, 137, 129.
  • Chen, J., Cantwell, B., and Mansour, N. 1989. The topology and vorticity dynamics of a three-dimensional plane compressible wake. Proc. 10th Australasian Fluid Mechanics Conference, Melbourne, Australia, pp. 5.1–5.4.
  • Chong, M., Perry, A., and Cantwell, B. 1990. A general classification of three-dimensional flow fields. Phys. Fluids, 2, 765.
  • Cifuentes, L. 2015. Local flow topologies and scalar structures in turbulent combustion. PhD thesis. University of Zaragoza, Spain.
  • Cifuentes, L., Dopazo, C., Martin, J., and Jimenez, C. 2014. Local flow topologies and scalar structures in a turbulent premixed flame. Phys. Fluids, 26, 065108.
  • Da Silva, C., and Pereira, J. 2008. Invariants of the velocity-gradient, rate of strain, and rate-of-rotation tensors across the turbulent/non turbulent interface in jets. Phys. Fluids, 20, 055101.
  • Dabireau, F., Cuenot, B., Vermorel, O., and Poinsot, T. 2003. Interaction of flames of H2–O2 with inert walls. Combust. Flame, 135, 123.
  • Dopazo, C., Martin, J., and Hierro, J. 2007. Local geometry of isoscalar surfaces. Phys. Rev. E, 76, 056316.
  • Dunstan, T.D., Swaminathan, N., Bray, K.N.C., and Cant, R.S. 2011. Geometrical properties and turbulent flame speed measurements in stationary premixed v-flames using direct numerical simulations. Flow Turb. Combust, 87, 237.
  • Elsinga, E., and Marusic, I. 2010. Universal aspects of small-scale motions in turbulence. J. Fluid Mech., 662, 514.
  • Fernandez-Pello, A.C. 2002. Micropower generation using combustion: issues and approaches. Proc. Combust. Inst., 29, 883.
  • Fritz, J., Kröner, M., and Sattelmayer, T. 2004. Flashback in a swirl burner with cylindrical premixing zone. ASME J. Engng. Gas Turbines Power, 126, 276–283.
  • Grout, R., Gruber, A., Yoo, C., and Chen, J.H. 2011. Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow. Proc. Combust. Inst., 33, 1629.
  • Gruber, A., Chen, J.H., Valiev, D., and Law, C.K. 2012. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech., 709, 516.
  • Gruber, A., Sankaran, R., Hawkes, E.R., and Chen, J.H. 2010. Turbulent flame-wall interaction: a direct numerical simulation study. J. Fluid. Mech., 658, 5.
  • Heywood, J.B. 1998. Internal Combustion Engine Fundamentals, 1st edn, McGraw Hills, New York, USA.
  • Huang, W.M., Vosen, S.R., and Greif, R. 1986. Heat transfer during laminar flame quenching. Proc. Combust. Inst., 21, 1853.
  • Jarosinsky, J. 1986. A survey of recent studies on flame extinction. Combust. Sci. Technol., 12, 81.
  • Jenkins, K.W., and Cant, R.S. 1999. Direct numerical simulation of turbulent flame kernel. In Liu, C., Sakell, L., Beautner, T (eds), Rutgers University. Proc. Second AFOSR Conf. on DNS and LES. Kluwer Academic Publishers; Dordrecht, Netherlands.
  • Khashehchi, M., Elsinga, G., Ooi, A., Soria, J., and Marusic, I. 2010. Studying invariants of the velocity gradient tensor of a round turbulent jet across the turbulent/nonturbulent interface using tomo-piv. 15th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, pp. 1–12.
  • Lai, J., Alwazzan, D., and Chakraborty, N. 2017d. Turbulent scalar flux transport in head-on quenching of turbulent premixed flames in the context of Reynolds Averaged Navier Stokes simulations. J. Turb., 18, 1033.
  • Lai, J., and Chakraborty, N. 2016a. Effects of Lewis number on head on quenching of turbulent premixed flame: a direct numerical simulation analysis. Flow Turb. Combust., 96, 279.
  • Lai, J., and Chakraborty, N. 2016b. Statistical behaviour of scalar dissipation rate for head on quenching of turbulent premixed flames: a direct numerical simulation analysis. Combust. Sci. Technol., 188,250.
  • Lai, J., and Chakraborty, N. 2016c. A-priori direct numerical simulation modelling of scalar dissipation rate transport in head-on quenching of turbulent premixed flames. Combust. Sci. Technol., 188, 1440.
  • Lai, J., and Chakraborty, N. 2016d. Modelling of progress variable variance transport in head on quenching of turbulent premixed flames: a direct numerical simulation analysis. Combust. Sci. Technol., 188, 1925.
  • Lai, J., Chakraborty, N., and Klein, M. 2017c. Assessment of algebraic flame surface density closures in the context of large eddy Simulations of head-on quenching of turbulent premixed flames. Combust. Sci. Technol., 189, 1966.
  • Lai, J., Chakraborty, N., and Klein, M. 2017e. Direct Numerical Simulation of head-on quenching of statistically planar methane-air flames using a detailed chemical mechanism. Proc. 10th Mediterranean Combustion Symposium, Napoli, Italy, September 17–21.
  • Lai, J., Chakraborty, N., and Lipatnikov, A.N. 2017a. Vorticity and enstrophy transport in head-on quenching of turbulent premixed flames. Eur. J. Mech. Fluids/B, 65, 384.
  • Lai, J., Moody, A., and Chakraborty, N. 2017b. Turbulent kinetic energy transport in head-on quenching of turbulent premixed flames in the context of Reynolds averaged Navier Stokes simulations. Fuel, 199, 456.
  • Maekawa, H., Hiyama, T., and Matsuo, Y. 1999. Study of the geometry of flow patterns in compressible isotropic turbulence. JSME Intl J., 42, 846.
  • Ooi, A., Martın, J., Soria, J., and Chong, M. 1999. A study of the evolution and characteristics of the invariants of the velocity gradient tensor in isotropic turbulence. J. Fluid Mech., 381, 141.
  • Perry, A., and Chong, M. 1987. A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fluid Mech., 19, 125.
  • Poinsot, T., and Veynante, D. 2001. Theoretical and Numerical Combustion, R.T.Edwards Inc., Philadelphia, USA.
  • Poinsot, T.J., Haworth, D.C., and Bruneaux, G. 1993. Direct simulation and modelling of flame-wall interaction for premixed turbulent combustion. Combust. Flame, 95, 118.
  • Poinsot, T.J., and Lele, S. 1992. Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys., 101, 104.
  • Popp, P., Smooke, M., and Baum, M. 1996. Heterogeneous/homogeneous reaction and transport coupling during ame-wall interaction. Proc. Combust. Inst., 26, 2693.
  • Sellmann, J., Lai, J., Chakraborty, N., and Kempf, A.M. 2017. Flame surface density based modelling of head-on quenching of turbulent premixed flames. Proc. Combust. Inst., 36, 1817.
  • Sondergaard, R., Chen, J., Soria, J., and Cantwell, B. 1991. Local topology of small scale motions in turbulent shear flows. Eighth symposium on turbulent shear flows, Technical University of Munich, 16/1.1–16/1.6.
  • Soria, J., Sondergaard, R., Cantwell, B., Chong, M., and Perry, A. 1994. A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids, 6, 871.
  • Suman, S., and Girimaji, S. 2010. Velocity gradient invariants and local flow field topology in compressible turbulence. J. Turb., 11, 1.
  • Tanahashi, M., Fujimura, M., and Miyauchi, T. 2000. Coherent fine-scale eddies in turbulent premixed flames. Proc. Combust. Inst., 28, 529.
  • Tsinober, A. 2000. Vortex Stretching versus Production of Strain/Dissipation. In Hunt, J.C.R., and Vassilicos, J.C., (eds) Turbulence Structure and Vortex Dynamics, Cambridge University Press, Cambridge, UK, 164–191.
  • Vosen, S.R., Greif, R., and Westbrook, C. 1984. Unsteady heat transfer in laminar flame quenching. Proc. Combust. Inst., 20, 76.
  • Wacks, D.H., and Chakraborty, N. 2016. Flow topology and alignments of scalar gradients and vorticity in turbulent spray flames: a direct numerical simulation analysis. Fuel, 184, 922.
  • Wacks, D.H., Chakraborty, N., Klein, M., Arias, P.G., and Im, H.G. 2016. Flow topologies in different regimes of premixed turbulent combustion: a direct numerical simulation analysis. Phys. Rev. Fluids, 1, 083401.
  • Wang, L., and Lu, X. 2012. Flow topology in compressible turbulent boundary layer. J. Fluid Mech., 703, 255.
  • Wray, A.A. 1990. Minimal Storage Time Advancement Schemes for Spectral Methods, NASA Ames Research Center, California.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.