240
Views
2
CrossRef citations to date
0
Altmetric
Articles

Strong knocking characteristics under compression ignition conditions with high pressures

, , , , &
Pages 1786-1803 | Received 26 Feb 2018, Accepted 30 Apr 2018, Published online: 14 May 2018

References

  • Bates, L., Bradley, D., Paczko, G., and Peters, N. 2016. Engine hot spots: Modes of auto-ignition and reaction propagation. Combust. Flame., 166, 80–85.
  • Bradley, D., and Kalghatgi, G.T. 2009. Influence of auto-ignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame., 156, 2307.3.
  • Bradley, D., and Morley, C. 2002. Amplified pressure waves during autoignition: Relevance to CAI engines. SAE Technical Paper 2002-01-2868.
  • Dahnz, C., and Spicher, U. 2010. Irregular combustion in supercharged spark ignition engines − pre-ignition and other phenomena. Int. J. Engine Res.., 11, 485.
  • Dai, P., Chen, Z., Chen, S., and Ju, Y. 2015. Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst., 35, 3045.
  • Grogan, K.P., Goldsborough, S.S., and Ihme, M. 2015. Ignition regimes in rapid compression machines. Combust. Flame., 162, 3071.
  • Gu, D., and Bradley, D.E. 2003. Modes of reaction front propagation from hot spots. Combust. Flame., 133, 63.
  • He, X., Donovan, M.T., Zigler, B.T., Palmer, T.R., Walton, S.M., Wooldridge, M.S., and Atreya, A. 2004. Demonstration of a free-piston rapid compression facility for the study of high temperature combustion phenomena. Combust. Flame., 142, 266.
  • Hockett, A., Hampson, G., and Marchese, A.J. 2016. Development and validation of a reduced chemical kinetic mechanism for computational fluid dynamics simulations of natural gas/diesel dual-fuel engines. Energ. Fuel.., 30, 2014.
  • Im, H.G., Pal, P., Wooldridge, M.S., and Mansfield, A.B. 2015. A regime diagram for auto-ignition of homogeneous reactant mixtures with turbulent velocity and temperature fluctuations. Combust. Sci. Technol., 187, 1263.
  • Kalghatgi, G.T., and Bradley, D. 2012. Pre-ignition and ‘super-knock’ in turbo-charged spark-ignition engines. Int. J. Engine Res., 13, 399.
  • Lutz, A.E., Kee, R.J., Miller, J.A., Dwyer, H.A., and Oppenheim, A.K. 1989. Dynamic Effects of Auto-ignition Centers for Hydrogen and C1, 2-Hydrocarbon Fuels, Twenty-Second Symposium (International) on Combustion, Pittsburgh.
  • Pan, J.Y., Shu, G.Q., and Wei, H.Q. 2014. Interaction of flame propagation and pressure waves during knocking combustion in spark-ignition engines. Combust. Sci. Technol., 186, 192.
  • Pan, J.Y., Shu, G.Q., Zhao, P., Wei, H.Q., and Chen, Z. 2016a. Interactions of flame propagation, auto-ignition and pressure wave during knocking combustion. Combust. Flame., 164, 319.
  • Pan, J.Y., Wei, H.Q., Shu, G.Q., and Chen, R. 2017a. Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions. Combust. Flame., 185, 63.
  • Pan, J.Y., Wei, H.Q., Shu, G.Q., Pan, M.Z., Feng, D.Q., and Li, N. 2017b. LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine. Appl. Energy.., 191, 183.
  • Pan, J.Y., Wei, H.Q., Shu, G.Q., Zhao, P., and Chen, Z. 2016b. The role of low temperature chemistry in combustion mode development under elevated pressures. Combust. Flame., 174, 179.
  • Peters, N., Kerschgens, B., and Paczko, G. 2013. Super-knock prediction using a refined theory of turbulence. SAE Int. J. Engines., 6, 953.
  • Pöschl, M., and Sattelmayer, T. 2008. Influence of temperature in homogeneities on knocking combustion. Combust. Flame., 153, 562.
  • Qi, Y.L., Wang, Z., Wang, J.X., and He, X. 2015. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock. Combust. Flame., 162, 4119.
  • Robert, A., Richard, S., Colin, O., and Poinsot, T. 2015. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combust. Flame., 162, 2788.
  • Rudloff, J., Zaccardi, J.M., and Richard, S. 2013. Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode. Proc. Combust. Inst., 34, 2959.
  • Tanoue, K., Jimoto, T., Kimura, T., Yamamoto, M., and Hashimoto, J. 2017. Effect of initial temperature and fuel properties on knock characteristics in a rapid compression and expansion machine. Proc. Combust. Inst., 36, 3523.
  • Wang, H., Yao, M., and Reitz, R.D. 2013. Development of a reduced primary reference fuel (PRF) mechanism for IC engine combustion simulations. Energ. Fuel., 27, 7843.
  • Wang, Z., Liu, H., and Reitz, R.D. 2017. Knocking combustion in spark-ignition engines. Prog. Energ. Combust., 61, 78.
  • Wang, Z., Liu, H., Song, T., Qi, Y., He, X., Shuai, S., and Wang, J. 2015a. Relationship between super-knock and pre-ignition. Int. J. Engine Res., 16, 166.
  • Wang, Z., Qi, Y.L., He, X., Wang, J.X., and Law, C.K. 2015b. Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation. Fuel., 144, 222.
  • Weber, B., Sung, C., and Renfro, M. 2015a. On the uncertainty of temperature estimation in a rapid compression machine. Combust. Flame., 162, 2518–2528.
  • Weber, B.W., Sung, C.J., and Renfro, M.W. 2015b. On the uncertainty of temperature estimation in a rapid compression machine. Combust. Flame., 162, 2518.
  • Wei, H.Q., Hua, J.X., Pan, M.Z., Feng, D.Q., Zhou, L., and Pan, J.Y. in press. Experimental investigation on knocking combustion characteristics of gasoline compression ignition engine. Energy., 143, 624.
  • Yao, M., Zheng, Z., Zhang, B., and Chen, Z. 2004. The effect of PRF fuel octane number on HCCI operation. SAE Technical Paper 2004-01-2992.
  • Yu, H., Qi, C.K., and Chen, Z. 2017. Effects of flame propagation speed and chamber size on end-gas autoignition. Proc. Combust. Inst., 36, 3533.
  • Zhang, F., Yu, R., and Bai, X.S. 2015. Direct numerical simulation of PRF70/air partially premixed combustion under IC engine conditions. Proc. Combust. Inst., 35, 2975.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.