219
Views
9
CrossRef citations to date
0
Altmetric
Research Article

DDT limits of ethanol–air in an obstacles-filled tube

ORCID Icon, &
Pages 1-16 | Received 31 Oct 2017, Accepted 13 May 2018, Published online: 11 Jun 2018

References

  • Anderson, T.J., and Dabora, E.K. 1992. Measurements of normal detonation wave structure using Rayleigh imaging. Int. Symp. Combust., 24(1), 1853–1860. doi:10.1016/S0082-0784(06)80217-1.
  • Auffret, Y., Desbordes, D., and Presles, H.N. 2001. Detonation structure and detonability of C2H2-O2mixtures at elevated initial temperature. Shock Waves, 11(2), 89–96. doi:10.1007/PL00004069.
  • Bathel, H.O. 1974. Predicted spacings in hydrogen‐oxygen‐argon detonations.pdf. Phys. Fluids, 17(8), 1547–1553. doi:10.1063/1.1694932.
  • Cantera. (2017a) Chemical kinetics, thermodynamics, transport properties. Available at: http://www.cantera.org/docs/sphinx/html/index.html (Accessed: 4 October 2017).
  • Cantera. (2017b) Detonation tool box. Available at: http://shepherd.caltech.edu/EDL/public/cantera/html/SD_Toolbox/(Accessed: 4 October 2017).
  • Ciccarelli, G., et al. 1994. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures. Combust. Flame, 99(2), 212–220. doi:10.1016/0010-2180(94)90124-4.
  • Ciccarelli, G., Ginsberg, T.G., and Boccio, J.L. 1997a. The influence of initial temperature on the detonability characteristics of hydrogen-air-steam mixtures*. Combust. Sci. Technol., 128(1–6), 181–196. doi:10.1080/00102209708935708.
  • Ciccarelli, G., Ginsberg, T., Boccio, J. L., Finfrock, C., Gerlach, L., Tagawa, H., Malliakos, A. et al. (1997b) Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility. Technical Report NUREG/CR-6391, BNL-NUREG-52482, Upton.
  • Ciccarelli, G., et al. 2017. Effect of orifice plate spacing on detonation propagation. J. Loss Prev. Ind., 49, 739–744. doi:10.1016/j.jlp.2017.03.014.
  • Ciccarelli, G., and Cross, M. 2016. On the propagation mechanism of a detonation wave in a round tube with orifice plates. Shock Waves. Springer Berlin Heidelberg, 26(5), 587–597. doi:10.1007/s00193-016-0676-6.
  • Ciccarelli, G., and Dorofeev, S. 2008. Flame acceleration and transition to detonation in benzene-air mixtures. Combust. Flame, 34, 499–550. doi:10.1016/S0010-2180(98)00014-5.
  • Cross, M., and Ciccarelli, G. 2015. DDT and detonation propagation limits in an obstacle filled tube. J. Loss Prev. Process Ind.. Elsevier Ltd, 36, 380–386. doi:10.1016/j.jlp.2014.11.020.
  • Desbordes, D. 1988. Transmission of overdriven plane detonations: critical diameter as a function of cell regularity and size. Prog. Astronaut. Aeronaut., 114, 170–185. doi:10.2514/5.9781600865886.0170.0185.
  • Diakow, P. 2012. Detonation Characteristics of Dimethyl Ether, Methanol and Ethanol Air Mixtures, Queen’s University, Kingston, Canada. https://qspace.library.queensu.ca/handle/1974/7428.
  • Diakow, P., Cross, M., and Ciccarelli, G. 2015. Detonation characteristics of dimethyl ether and ethanol–air mixtures. Shock Waves, 25(3), 231–238. doi:10.1007/s00193-015-0554-7.
  • Eaton, R., et al. 2012. Measurement and chemical kinetic model predictions of detonation cell size in methanol-oxygen mixtures. Shock Waves, 22(2), 173–178. doi:10.1007/s00193-012-0359-x.
  • Kaneshige, M., and Shepherd, J.E. (2005) GALCIT explosion dynamics laboratory detonation database. Available at: http://shepherd.caltech.edu/detn_db/html/db.html (Accessed: 9 April 2018).
  • Kao, S., and Shepherd, J.E. (2008) Numerical Solution Methods for Control Volume Explosions and ZND Detonation Structure, GALCIT Report FM2006.007, Pasadena. doi:oai:digitalcommons.uconn.edu:dissertations-6482.
  • Knystautas, R., et al. 1986. Transmission of a flame from a rough to a sooth-walled tube. In Bowen, J., Leyer, J., and Soloukhin, R.I. (eds.) Dynamics of Explosions. Progress in Astronautics and Eronautics, New York, pp. 37–52.
  • Kumar, R.K. 1990. Detonation cell widths in hydrogen-oxygen-diluent mixtures. Combust. Flame, 80, 157–169. doi:10.1016/0010-2180(90)90124-A.
  • Kuznetsov, M., et al. 1999. Effect of Obstacle Geometry on Behavior of Turbulent Flames Report FZKA- 6328, Moscow.
  • Lee, J.H., Knystautas, R., and Chan, C.K. 1985. Turbulent flame propagation in obstacle-filled tubes. Symp. (Int.) Combust., 20(1), 1663–1672. doi:10.1016/S0082-0784(85)80662-7.
  • Lee, J.H.S. 2008. The Detonation Phenomenon, Cambridge University Press, New York.
  • Moen, I.O., et al. 1982. Diffraction of detonation from tubes into a large fuel-air explosive cloud. Symp. (Int.) Combust., 19(1), 635–644. doi:10.1016/S0082-0784(82)80238-5.
  • Peraldi, O., Knystautas, R., and Lee, J.H. 1988. Criteria for transition to detonation in tubes. Symp. (Int.) Combust., 21(1), 1629–1637. doi:10.1016/S0082-0784(88)80396-5.
  • Presles, H.N., et al. 1996. Gaseous nitromethane and nitromethane-oxygen mixtures: A new detonation structure. Shock Waves, 6(2), 111–114. doi:10.1007/BF02515194.
  • Rainsford, G., and Ciccarelli, G. 2017. Visualization of detonation propagation in a round tube equipped with orifice plates. Proceedings of the 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, pp. 1–6. Available at: http://icders2017.com/wp-content/uploads/26th_ICDERS_Program/Oral/26thICDERS_submission_1091.pdf.
  • Shepherd, J.E., et al. 1988. Analyses of the cellular structure of detonations. Symp. (Int.) Combust., 21(1), 1649–1658. doi:10.1016/S0082-0784(88)80398-9.
  • Strehlow, R.A., et al. 1967. Transverse wave structure in detonations. Symp. (Int.) Combust., 11(1), 683–692. doi:10.1016/S0082-0784(67)80194-2.
  • Strehlow, R.A., and Engel, C.D. 1969. Transverse waves in detonations: II structure and spacing in H2-O2, C2H2-O2, C2H4-O2, and CH4-O2 systems. AIAA J., 7(3), 323–328.
  • Vasil’ev, A.A. 2012. Dynamic Parameters of Detonation. In Zhang, F. (ed.) Shock Waves Science and Technology Library, Vol. 6: Detonation Dynamics, Springer, pp. 213–279. doi:10.1007/978-3-642-22967-1_4.
  • Vasil’ev, A.A. 2014. Monofuel as a source of bifurcation properties of multifuel systems. Combust. Explosion Shock Waves, 50(2), 135–143. doi:10.1134/S0010508214020038.
  • Zhao, Z., et al. 2008. Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int. J. Chem. Kinet., 40(1), 1–18. doi:10.1002/kin.20285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.