298
Views
16
CrossRef citations to date
0
Altmetric
Articles

Combustion characteristics of spent coffee ground mixed with crude glycerol briquette fuel

&
Pages 2030-2043 | Received 16 Feb 2018, Accepted 28 May 2018, Published online: 22 Jun 2018

References

  • Allesina, G., Pedrazzi, S., Allegretti, F., and Tartarini, P. 2017. Spent coffee grounds as heat source for coffee roasting plants: experimental validation and case study. Appl. Therm. Eng., 126, 730–736. doi:10.1016/j.biombioe.2012.05.028.
  • Ballesteros, L.F., Teixeira, J.A., and Mussattoa, S.I. 2014. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol., 7, 3493–3503. doi:10.1007/s11947-014-1349-z.
  • Baron, J., Kandefer, S., Olek, M., Pilawska, M., and Zukowski, W. 2006. Small Scale Biomass Incinerator with a Bubbling Fluidised Bed. II. Combustion of Feathers and MBM. Prague, Brussels, Chemistry and Biochemistry in the Agricultural Production, Environment Protection,Human and Animal Health, 7 . Available at: http://works.bepress.com/witold_zukowski/24/
  • Bok, J.P., Choi, H.S., Choi, Y.S., Park, H.C., and Kim, S.J. 2012. Fast pyrolysis of coffee grounds: characteristics of product yields and biocrude oil quality. Energy., 47, 17–24. doi:10.1016/j.energy.2012.06.003.
  • Caetano, N.S., Silva, V.F.M., Melo, A.C., Mata, T.M., and Martins, A.A. 2014. Spent coffee grounds for biodiesel production and other applications. Clean Technol. Environ. Policy., 16, 1423–1430. doi:10.1007/s10098-014-0773-0.
  • Chaivatamaset, P., Sricharoon, P., Tia, S., and Bilitewski, B. 2014. The characteristics of bed agglomeration/defluidization in fluidized bed firing palm fruit bunch and rice straw. Appl. Therm. Eng., 70, 737–747. doi:10.1016/j.applthermaleng.2014.05.061.
  • Chen, M., Liu, X., and Wei, Y. 2015. Combustion behavior of corncob/bituminous coal and hardwood/bituminous coal. Renewable Energy., 81, 355–365. doi:10.1016/j.renene.2015.03.021.
  • Cho, D.W., Cho, S.H., Song, H., and Kwon, E.E. 2015. Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground. Bioresour. Technol., 189, 1–6. doi:10.1016/j.biortech.2015.04.002.
  • Dohlert, P., Weidauer, M., and Enthaler, S. 2016. Spent coffee ground as source for hydrocarbon fuels. J ENERGY CHEM., 25, 146–152. doi:10.1016/j.jechem.2015.11.012.
  • Echeverria, M.C., and Nuti, M. 2017. Valorisation of the residues of coffee agro-industry: perspectives and limitations. TOWMJ., 10, 13–22. doi:10.2174/1876400201710010013.
  • EIA (U.S. Energy Information Administration), Monthly Energy Review January 2018. in press. Renewable energy production and consumption by source [Online]. EIA Available from: [Accessed 25 th January 2018]. https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf.
  • EUBIONET (European Bioenergy Networks). 2003. Biomass CO-firing, fuel flexible avedore plant with ultra supercritical boiler [Online]. EUBIONET Available from: [Accessed 14 th June 2017]. https://ec.europa.eu/energy/sites/ener/files/documents/2003_cofiring_eu_bionet.pdf.
  • European Parliament, 2015 . Directive (EU) 2015/2193 of the European Parliament and of the Council of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants (Text with EEA relevance). [Online]. European Parliament (Available from: [Accessed 8 the June 2017]). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2193.
  • European Commission (2015a), 2015. Commission Regulation (EU) 2015/1185 of 24 April 2015 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for solid fuel local space heaters (Text with EEA relevance). [Online]. European Commission. (Available from: [Accessed 8 th June 2017]). https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1528971208462&uri=CELEX:32015R1185.
  • Gholami, Z., Abdullah, A.Z., and Lee, K.T. 2014. Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renew. Sust. Energ. Rev., 39, 327–341. doi:10.1016/j.rser.2014.07.092.
  • IOC (International Coffee Organization). 2017. Global coffee consumption [Online]. IOC Available from: [Accessed 24 th December 2017]. http://www.ico.org/monthly_coffee_trade_stats.asp.
  • IRBEA (Irish BioEnergy Association), 2016. Study on Biomass Combustion Emissions. Appendix 1: Technical Literature Review Report for Biomass Combustion Emission Study: Biomass Appliances – Emissions. [Online]. IRBEA Report (Available from: [Accessed 11 th June 2017]). http://www.irbea.org/wp-content/uploads/2016/12/IrBEA-BiomassEmissionsReportAndAppendices.pdf.
  • Kang, S.B., Oh, H.Y., Kim, J.J., and Choi, K.S. 2017. Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW). Renewable Energy, 113, 1208–1214. doi:10.1016/j.renene.2017.06.092.
  • Karmee, S.K. in press. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manag., 72, 240–254. doi:10.1016/j.wasman.2017.10.042.
  • Limousy, L., Jeguirim, M., Dutournie, P., Kraiem, N., Lajili, M., and Said, R. 2013. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel, 107, 323–329. doi:10.1016/j.fuel.2012.10.019.
  • Limousy, L., Jeguirim, M., Labbe, S., Balay, F., and Fossard, E. 2015. Performance and emissions characteristics of compressed spent coffee ground/wood chip logs in a residential stove. Energy. Sustain. Dev., 28, 52–59. doi:10.1016/j.esd.2015.07.002.
  • Luz, F.C., Volpeb, M., Fiorib, L., Mannia, A., Cordinera, S., Mulonea, V., and Rocco, V. in press. Spent coffee enhanced biomethane potential via an integrated hydrothermalcarbonization- anaerobic digestion process. Bioresour. Technol., 256, 102–109. doi:10.1016/j.biortech.2018.02.021.
  • Mitchell, E.J.S., Langton, A.R.L., Jones, J.M., Williams, A., Layden, P., and Johnson, R. 2016. The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. FPT, 142, 115–123. doi:10.1016/j.fuproc.2015.09.031.
  • Murthy, P.S., and Naidu, M.M. 2012. Sustainable management of coffee industry by-products And value addition-A review. Resour. Conserv. Recycl., 66, 45–58. doi:10.1016/j.resconrec.2012.06.005.
  • Nanda, M.R., Yuan, Z., Qin, W., Poirier, M.A., and Chunbao, X. 2014. Purification of crude glycerol using acidification: effects of acid types and product characterization. Austin. Chem. Eng., 1, 1–7.
  • NCBI (National Center for Biotechnology Information). 2010. Acute exposure guideline levels for selected airborne chemicals: acrolien/summary of AEGLS. 8, 35-36 [Online]. NCBI Available from: [Accessed 12th July 2017]. https://www.ncbi.nlm.nih.gov/books/NBK220012/pdf/Bookshelf_NBK220012.pdf
  • Page, J.C., Arrudab, N.P., and Freitas, S.P. 2017. Crude ethanolic extract from spent coffee grounds: volatile andfunctional properties. Wast Manag., 69, 463–469. doi:10.1016/j.wasman.2017.08.043.
  • Park, J., Kim, B., Son, J., and Lee, J.W. in press. Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of biodiesel. Bioresour. Technol., 249, 494–500. doi:10.1016/j.biortech.2017.10.048.
  • Patel, R.N., Patel, V.R., Varia, N., and Patel, D. 2017. Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier. Energy, 119, 834–844. doi:10.1016/j.energy.2016.11.057.
  • Pattiya, A., Sukkasi, S., and Goodwin, V. 2012. Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor. Energy, 44, 1067–1077. doi:10.1016/j.energy.2012.04.035.
  • Pilusa, F., Muzenda, E., and Huberts, R. 2013. Emissions analysis from combustion of eco- fuel briquettes for domestic application. JESA., 24, 30–36.
  • Queiros, P., Costa, M., and Carvalho, R.H. 2013. Co-combustion of crude glycerin with natural gas and hydrogen. Proc. Combust. Inst., 34, 2759–2767. doi:10.1016/j.proci.2012.07.058.
  • Quispe, C.A.G., Coronado, C.J.R., and Carvalho, J.A. 2013. Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew. Sust. Energ. Rev., 27, 475–493. doi:10.1016/j.rser.2013.06.017.
  • Raslavicius, L. 2012. Characterization of the woody cutting waste briquettes containing absorbed glycerol. Biomass Bioenergy, 45, 144–151. doi:10.1016/j.biombioe.2012.05.028.
  • Rocha, M.V.P., Matos, L.J.B.L., Lima, L.P., Figueiredo, P.M.S., Lucena, I.L., Fernandes, F.A.N., and Gonçalves, L.R.B. 2014. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresour. Technol., 167, 343–348. doi:10.1016/j.biortech.2014.06.032.
  • Sakkampang, C. 2014. A study of biomass briquette from glycerin and agriculture biomass. (Ph.D. thesis). Khon Kaen Unversity. Thailand.
  • Sdrula, N. 2010. Study using classical or membrane separation in the biodiesel process. Desalination., 250, 1070–1072. doi:10.1016/j.desal.2009.09.110.
  • Smit, H.C., and Meincken, M. 2012. Time/temperature combustion profiles of various wood- based biofuels. Biomass Bioenergy., 39, 317–323. doi:10.1016/j.biombioe.2012.01.021.
  • Somnuk, K., Eawlex, P., and Prateepchaikul, G. 2017. Optimization of coffee oil extraction from spent coffee grounds usingfour solvents and prototype-scale extraction using circulation process. ANRES, 51, 181–187. doi:10.1016/j.anres.2017.01.003.
  • Vakkilainen, E., Kuparinen, K., and Heinimo, J. 2013. IEA bioenergy task 40, large industrial user of energy biomass [Online]. IEA Bioenergy Available from: [Accessed 16 th July 2017]. http://task40.ieabioenergy.com/wp-content/uploads/2013/09/t40-large-industrial-biomass-users.pdf.
  • Vega, R.C., Pina, G.L., Castaneda, H.A.V., and Oomah, B.D. 2015. Spent coffee grounds: A review on current research and future prospects. Trends. Food. Sci. Technol., 45, 24–36. doi:10.1016/j.tifs.2015.04.012.
  • Wakchaure, G.C., and Sharma, R.K. 2007. Physical quality of some biomass briquettes. JAE, 44, 48–52.
  • Wang, Y., Shao, Y., Matovic, M.D., and Whalen, J.K. 2015. Exploring switchgrass and hardwood combustion on excess air and ash fouling/slagging potential: laboratory combustion test and thermogravimetric kinetic analysis. Energ. Convers. Manage., 97, 409–419. doi:10.1016/j.enconman.2015.03.070.
  • Yang, L., He, Q., Havarda, P., Corscaddena, K., Xub, C., and Wang, X. 2017. Co-liquefaction of spent coffee grounds and lignocellulosic feedstocks. Bioresour. Technol., 237, 108–121. doi:10.1016/j.biortech.2017.02.087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.