260
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effects of n-butanol addition on sooting tendency and formation of C1 –C2 primary intermediates of n-heptane/air mixture in a micro flow reactor with a controlled temperature profile

, , , &
Pages 2066-2081 | Received 12 Jan 2018, Accepted 11 Jun 2018, Published online: 09 Jul 2018

References

  • Chakraborty, B.B., and Long, R. 1968. The formation of soot and polycyclic aromatic hydrocarbons in ethylene diffusion flames with methanol as an additive. Combust. Flame., 12(2), 168–170.
  • Dagaut, P., and Togbé, C. 2008. Oxidation kinetics of butanol–gasoline surrogate mixtures in a jet-stirred reactor: experimental and modeling study. Fuel., 87, 3313–3321.
  • Doğan, O. 2011. The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. Fuel., 90(7), 2467–2472.
  • Dubey, A.K., Tezuka, T., Hasegawa, S., Nakamura, H., and Maruta, K. 2016. Study of sooting behavior of premixed C1–C4 n-alkanes/air flames using a micro flow reactor with a controlled temperature profile. Combust. Flame., 174, 100–110.
  • Ezeji, T.C., Qureshi, N., and Blaschek, H.P. 2007. Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol., 18, 220–227.
  • Frassoldati, A., Cuoci, A., Faravelli, T., Niemann, U., Ranzi, E., Seiser, R., and Seshadri, K. 2010b. An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combust. Flame., 157, 2–16.
  • Frassoldati, A., Cuoci, A., Faravelli, T., and Ranzi, E. 2010a. Kinetic modeling of the oxidation of ethanol and gasoline surrogate mixtures. Combust. Sci. Technol., 182(4–6), 653–667.
  • Frassoldati, A., Grana, R., Faravelli, T., Ranzi, E., Oßwald, P., and Kohse-Höinghaus, K. 2012. Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames. Combust. Flame., 159(7), 2295–2311.
  • Frenklach, M., and Wang, H.A.I. 1990. Detailed modeling of soot particle nucleation and growth. Symp. Combust., 23(1), 1559–1566.
  • Ghiassi, H., Toth, P., and Lighty, J.S. 2014. Sooting behaviors of n-butanol and n-dodecane blends. Combust. Flame., 161(3), 671–679.
  • Goldaniga, A., Faravelli, T., Ranzi, E., and Dagaut, P. 1998. Oxidation of Oxygenated Octane Improvers: MTBE, ETBE, DIPE, AND TAME. Symp. Combust., 27, 353–360.
  • Han, X., Wang, M., and Zheng, M. 2015. Study of Low Temperature Combustion with Neat n-Butanol on a Common-rail Diesel Engine. SAE Int.
  • Harris, M.M., and Al, E.T. 1986. Influence of temperature and hydroxyl concentration on incipient soot formation in premixed flames. Combust. Flame., 64, 99–112.
  • Hori, M., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K. 2013. Characteristics of n-heptane and toluene weak flames in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 34, 3419–3426.
  • Hori, M., Yamamoto, A., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K. 2012. Study on octane number dependence of PRF/air weak flames at 1–5 atm in a micro flow reactor with a controlled temperature profile. Combust. Flame., 159, 959–967.
  • Jin, C., Yao, M., Liu, H., Lee, C.F., and Ji, J. 2011. Progress in the production and application of n-butanol as a biofuel. Renew. Sustain. Energy Rev., 15(8), 4080–4106.
  • Kamada, T., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K. 2014. Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile. Combust. Flame., 161, 37–48.
  • Kikui, S., Kamada, T., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K. 2015. Characteristics of n-butane weak flames at elevated pressures in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 35(3), 3405–3412.
  • Maricq, M.M. 2012. Soot formation in ethanol/gasoline fuel blend diffusion flames. Combust. Flame., 159(1), 170–180.
  • Maruta, K., Kataoka, T., Il, K.N., Minaev, S., and Fursenko, R. 2005. Characteristics of combustion in a narrow channel with a temperature gradient. Proc. Combust. Inst., 30(2), 2429–2436.
  • Mcnesby, K.L., Miziolek, A.W., and Nguyen, T. 2005. Experimental and computational studies of oxidizer and fuel side addition of ethanol to opposed flow air/ethylene flames. Combust. Flame., 142, 413–427.
  • Merola, S., Tornatore, C., Marchitto, L., Valentino, G., and Corcione, F. 2012. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine. Int. J. Energy Environ. Eng., 3(1), 6.
  • Miyamoto, N., Ogawa, H., and Nabi, M. 2000. Approaches to extremely low emissions and efficient diesel combustion with oxygenated fuels. Int. J. Engine Res., 1(1), 71–85.
  • Nakamura, H., Suzuki, S., Tezuka, T., Hasegawa, S., and Maruta, K. 2015. Sooting limits and PAH formation of n-hexadecane and 2,2,4,4,6,8,8-heptamethylnonane in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 35, 3397–3404.
  • Nakamura, H., Takahashi, H., Tezuka, T., Hasegawa, S., Maruta, K., and Abe, K. 2016. Effects of CO-to-H2 ratio and diluents on ignition properties of syngas examined by weak flames in a micro flow reactor with a controlled temperature profile. Combust. Flame., 172, 94–104.
  • Nakamura, H., Tanimoto, R., Tezuka, T., Hasegawa, S., and Maruta, K. 2014. Soot formation characteristics and PAH formation process in a microflow reactor with a controlled temperature profile. Combust. Flame., 161(2), 582–591.
  • Öktem, B., Tolocka, M.P., Zhao, B., Wang, H., and Johnston, M.V. 2005. Chemical species associated with the early stage of soot growth in a laminar premixed ethylene – oxygen – argon flame. Combust. Flame., 142, 364–373.
  • Olson, D.B., and Madronich, S. 1985. The effect of temperature on soot formation in premixed flames. Combust. Flame., 60(2), 203–213.
  • Özaktas, T., Ergeneman, M., Karaosmanoglu, F., and Arslan, H. 2000. Ignition delay and soot emission characteristics of methanol-diesel fuel blends. Pet. Sci. Technol., 18, 15–32.
  • Pepiotdesjardins, P., Pitsch, H., Malhotra, R., Kirby, S., and Boehman, A. 2008. Structural group analysis for soot reduction tendency of oxygenated fuels. Combust. Flame., 154(1–2), 191–205.
  • Pickett, L.M., and Siebers, D.L. 2006. Soot Formation in Diesel Fuel Jets Near the Lift-Off Length. Int. J. Engine. Res., 7(2), 103–130.
  • Ra, Y., and Reitz, R.D. 2008. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combust. Flame., 155(4), 713–738.
  • Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., and Kyritsis, D.C. 2010. Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers. Manag., 51(10), 1989–1997.
  • Ruiz, M.P., Callejas, A., Millera, A., Alzueta, M.U., and Bilbao, R. 2007. Soot formation from C2H2 and C2H4 pyrolysis at different temperatures. J. Anal. Appl. Pyrolysis., 79, 244–251.
  • Sahin, Z., Durgun, O., and Aksu, O.N. 2015. Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation – evaluation of engine performance, exhaust emissions, heat release and flammability analysis. Energy Convers. Manag., 103, 778–789.
  • Sarathy, S.M., Vranckx, S., Yasunaga, K., Mehl, M., Oßwald, P., Metcalfe, W.K., and Curran, H.J. 2012. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame., 159(6), 2028–2055.
  • Singh, P., Hui, X., and Sung, C.-J. 2016. Soot formation in non-premixed counterflow flames of butane and butanol isomers. Combust. Flame., 164, 167–182.
  • Slavinskaya, N.A., Riedel, U., Dworkin, S.B., and Thomson, M.J. 2012. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Combust. Flame., 159(3), 979–995.
  • Suzuki, S., Hori, M., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K. 2013. Study of cetane number dependence of diesel surrogates/air weak flames in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 34(2), 3411–3417.
  • Szwaja, S., and Naber, J.D. 2010. Combustion of n-butanol in a spark-ignition IC engine. Fuel., 89(7), 1573–1582.
  • Veloo, P.S., Wang, Y.L., Egolfopoulos, F.N., and Westbrook, C.K. 2010. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combust. Flame., 157(10), 1989–2004.
  • Violi, A., Voth, G.A., and Sarofim, A.F. 2005. The relative roles of acetylene and aromatic precursors during soot particle inception. Proc. Combust. Inst., 30(1), 1343–1351.
  • Wang, H., Deneys Reitz, R., Yao, M., Yang, B., Jiao, Q., and Qiu, L. 2013. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combust. Flame., 160(3), 504–519.
  • Westbrook, C.K., Pitz, W.J., Curran, H.J., Li, L., National, V., Box, P.O., and Li, V. 2006. Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines. J. Phys. Chem. A., 110, 6912–6922.
  • Wu, J., Hoon, K., Litzinger, T., Lee, S., Santoro, R., Linevsky, M., and Liscinsky, D. 2006. Reduction of PAH and soot in premixed ethylene – air flames by addition of ethanol. Combust. Flame., 144, 675–687.
  • Yamamoto, A., Oshibe, H., Nakamura, H., Tezuka, T., Hasegawa, S., and Maruta, K. 2011. Stabilized three-stage oxidation of gaseous n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst., 33, 3259–3266.
  • Yao, M., Wang, H., Zheng, Z., and Yue, Y. 2010. Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. Fuel., 89(9), 2191–2201.
  • Zhang, Y., and Boehman, A.L. 2010. Oxidation of 1-butanol and a mixture of n-heptane/1-butanol in a motored engine. Combust. Flame., 157(10), 1816–1824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.