497
Views
8
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of flame splitting phenomenon in upward flame spread over solids with a two-stage pyrolysis model

ORCID Icon & ORCID Icon
Pages 2082-2096 | Received 19 Feb 2018, Accepted 12 Jun 2018, Published online: 09 Jul 2018

References

  • Bhattacharjee, S., and Altenkirch, R.A. 1991. Radiation-controlled, opposed-flow flame spread in a microgravity environment. Symp. (Int.) Combust., 23(1), 1627–1633.
  • Di Blasi, C. 1993. Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog. Energy Combust. Sci., 19(1), 71–104.
  • Di Blasi, C. 1995. Predictions of wind-opposed flame spread rates and energy feedback analysis for charring solids in a microgravity environment. Combust. Flame, 100, 332–340.
  • Di Blasi, C. 1998. Dynamics of concurrent flame spread over a thin charring solid in microgravity. Fire Mater., 22(3), 95–101.
  • Di Blasi, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci., 24(1), 47–90.
  • Di Blasi, C., and Wichman, I.S. 1995. Effects of solid-phase properties on flames spreading over composite materials. Combust. Flame, 102(3), 229–240.
  • Feier, I.I., Shih, H.-Y., Sacksteder, K.R., and T’ien, J.S. 2002. Upward flame spread over thin solids in partial gravity. Proc. Combust. Inst., 29(2), 2569–2577.
  • Ferkul, P.V., Kleinhenz, J., Shih, H.-Y., Pettegrew, R., Sacksteder, K., and T’ien, J. 2004. Solid fuel combustion experiments in microgravity using a continuous fuel dispenser and related numerical simulations. Microgravity Sci. Technol., 15(2), 3–12.
  • Fernandez-Pello, A.C., Ray, S.R., and Glassman, I. 1981. Flame spread in an opposed forced flow: the effect of ambient oxygen concentration. Symp. (Int.) Combust., 18(1), 579–589.
  • Grayson, G.D., Sacksteder, K.R., Ferkul, P.V., and T’ien, J.S. 1994. Flame spreading over a thin solid in low-speed concurrent flow-drop tower experimental results and comparison with theory. Microgravity Sci. Technol., 7(2), 187–195.
  • Johnston, M.C., T’ien, J.S., Muff, D.E., Zhao, X., Olson, S.L., and Ferkul, P.V. 2015. Self induced buoyant blow off in upward flame spread on thin solid fuels. Fire Saf. J., 71, 279–286.
  • Jomaas, G., Torero, J.L., Eigenbrod, C., Niehaus, J., Olson, S.L., Ferkul, P.V., Legros, G., Fernandez-Pello, A.C., Cowlard, A.J., Rouvreau, S., Smirnov, N., Fujita, O., T׳Ien, J.S., Ruff, G.A., and Urban, D.L. 2015. Fire safety in space–beyond flammability testing of small samples. Acta Astronaut., 109, 208–216.
  • Kleinhenz, J.E., and T’ien, J.S. 2007. Combustion of nomex® III fabric in potential space habitat atmospheres: cyclic flame spread phenomenon. Combust. Sci. Technol., 179(10), 2153–2169.
  • Kumar, K., and Kumar, A. 2017. The dynamics of near limit self-propagating flame over thin solid fuels in microgravity. Proc. Combust. Inst., 36(2), 3081–3087.
  • Lefebvre, A.H. 1983. Gas Turbine Combustion, McGraw Hill Inc, New York.
  • Li, Y., and Liao, Y.-T.-T. 2018. Thermal analysis and pyrolysis modeling of NOMEX IIIA fabric. Combust. Sci. Technol., Issue doi:10.1080/00102202.2018.1459587 In print.
  • Liao, Y.-T.-T., and T’ien, J.S. 2013. A numerical simulation of transient ignition and ignition limit of a composite solid by a localised radiant source. Combust. Theor. Model., 17(6), 1096–1124.
  • Marcilla, A., and Beltran, M. 1995. Thermogravimetric kinetic study of poly (vinyl chloride) pyrolysis. Polym. Degrad. Stab., 48(2), 219–229.
  • Markstein, G.H., and De Ris, J., 1973. Upward fire spread over textiles. Proceedings of the Combustion Institute, Volume 14, pp. 1085–1097.
  • McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Vanella, M., Weinschenk C., and Overholt K. 2017. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model. NIST Special Publication 1018-1 Sixth Edition
  • Miller, R.S., and Bellan, J. 1997. A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics. Combust. Sci. Technol., 126(1–6), 97–137.
  • Mok, W.S.-L., and Antal, M.J., Jr. 1983. Effects of pressure on biomass pyrolysis. I. Cellulose pyrolysis products. Thermochim. Acta, 68(2–3), 155–164.
  • Olson, S.L. 1991. Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects. Combust. Sci. Technol., 76(4–6), 233–249.
  • Olson, S.L., Baum, H.R., and Kashiwagi, T. 1998. Finger-like smoldering over thin cellulosic sheets in microgravity. Symp. (Int.) Combust., 27(2), 2525–2533.
  • Olson, S.L., Ferkul, P.V., and T’ien, J.S. 1989. Near-limit flame spread over a thin solid fuel in microgravity. Symp. (Int.) Combust., 22(1), 1213–1222.
  • Olson, S.L., Kashiwagi, T., Fujita, O., Kikuchi, M., and Ito, K. 2001. Experiment observation of spot radiative ignition and subsequent three-dimensional flame spread over thin cellulose fuels. Combust. Flame, 125(1–2), 852–864.
  • Olson, S.L., and Miller, F.J. 2009. Experiment comparison of opposed and concurrent flame spread in a forced convective microgravity environment. Proc. Combust. Inst., 32(2), 2445–2452.
  • Park, W.C., Atreya, A., and Baum, H.R. 2007. Numerical study of thermal decomposition and pressure generation in charring solids undergoing opposed-flow flame spread. Proc. Combust. Inst., 31(2), 2643–2652.
  • Rein, G., Lautenberger, C., Fernandez-Pello, A.C., Terero, J.L., and Urban, D.L. 2006. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust. Flame, 146(1–2), 95–108.
  • Sacksteder, K.R., and T’ien, J.S. 1994. Buoyant downward diffusion flame spread and extinction in partial-gravity accelerations. Symp. (Int.) Combust., 25(1), 1685–1692.
  • Saito, K., Williams, F.A., Wichman, I.S., and Quintiere, J.G. 1989. Upward turbulent flame spread on wood under external radiation. J. Heat Transfer, 111(2), 438–445.
  • Shih, H.-Y., and Wu, H.-C. 2008. An experimental study of upward flame spread and interactions over multiple solid fuels. J. Fire Sci., 26, 435–453.
  • Smooke, M.D., and Giovangigli, V. 1991. Formulation of the premixed and nonpremixed test problem. In Lecture Notes in Physics, Springer-Verlag, New York, pp. Series 384. Chapter 1.https://link.springer.com/book/10.1007%2FBFb0035362#toc
  • Wang, Y., Meredith, K., Chatterjee, P., Krishnamoorthy, N., Zhou, X., and Dorofeev, S. 2011. Status of FireFOAM Development and Future Plan, s.n, Norwood, MA.
  • Wolverton, M.K., Altenkirch, R.A., and Tang, L. 1999. Implementing multi-step chemical kinetics models in opposed-flow flame spread over cellulose and a comparison to single-step chemistry. Combust. Flame, 118, 281–292.
  • Wu, K.K., Fan, W.F., Chen, C.H., Liou, T.M., and Pan, I.J. 2003. Downward flame spread over a thick PMMA slab in an opposed flow environment: experiment and modelling. Combust. Flame, 132(4), 697–707.
  • Zhao, X., Liao, Y.-T.-T., Johnston, M.C., T’ien, J.S., Ferkul, P.V., and Olson, S.L. 2017. Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity. Proc. Combust. Inst., 36(2), 2971–2978.
  • Zhao, X., and T’ien, J.S. 2015. A three-dimensional transient model for flame growth and extinction in concurrent flows. Combust. Flame, 162(5), 1829–1839.
  • Zucrow, M.J., and Hoffman, J.D. 1976. Gas Dynamics, John Wiley & Sons Inc, New York.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.