224
Views
5
CrossRef citations to date
0
Altmetric
Articles

Theoretical studies on fuel dispersion and fireball formation associated with aircraft crash

ORCID Icon, , &
Pages 2134-2163 | Received 07 Mar 2018, Accepted 25 Jun 2018, Published online: 18 Jul 2018

References

  • Abbasi, T., and Abbasi, S.A. 2007. The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J. Hazard. Mater., 141, 489–519.
  • Baum, H.R., and Rehm, R.G. 2005. A simple model of the World Trade Center fireball dynamics. Proc. Combust. Inst, 30, 2247–2254. doi:10.1016/j.proci.2004.08.125
  • Bird, R.B., Stewart, W.E., and Lightfoot, E.N. 1960. Transport Phenomena Wiley: New York.
  • Carlsson, J. 1999. Fire modeling using CFD – an introduction for fire safety engineers. Report 5025. Department of Fire Safety Engineering, Lund Institute of Technology, Lund University, Lund.
  • CCPS. 1999. Guidelines for Consequence Analysis of Chemical Releases, Wiley-AIChE: New York.
  • Chase, M. 1998. NIST-JANAF thermochemical tables. NIST Chemistry WebBook. NIST Stand. ed.
  • Coppalle, A., and Vervisch, P. 1983. The total emissivities of high-temperature flames. Combust. Flame, 49, 101–108.
  • Droste, B., Probst, U., and Heller, W. 1999. Impact of an exploding LPG rail tank car onto a castor spent fuel cask. Nucl. Technol. Publ., 10, 231–240.
  • Ertesvåg, I.S., and Magnussen, B.F. 2000. The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol., 159, 213–235.
  • Fleeter, R., Petersen, R.A., Toaz, R.D., Jakub, A., Sarohia, V. 1982. Antim Isting Kerosene Atomization and Flammability (No. JPL-82–40). Jet Propulsion Lab Pasadena CA.
  • Forasassi, G., and Lofrano, R. 2010. Preliminary analysis of an aircraft impact (CERSI-UNIPRI RL 1059/2010) 31.
  • The Guardian. 2015. Crash of Boeing 747 in Afghanistan Caused by Shifting Cargo. https://www.theguardian.com/world/2015/jul/15/crash-of-boeing-747-in-afghanistan-caused-by-shifting-cargo.
  • Hardee, H.C., and Lee, D.O. 1975. Expansion of clouds from pressurized liquids. Accid. Anal. Prev., 7, 91–102.
  • Hardee, H.C., Lee, D.O., and Benedick, W.B. 1978. Thermal hazard from LNG fireballs. Combust. Sci. Technol., 17, 189–197.
  • Hayden, M.S., Shanahan, D.F., Chen, L.-H., and Baker, S.P. 2005. Crash-resistant fuel system effectiveness in civil helicopter crashes. Aviat. Space. Environ. Med., 76, 782–785.
  • Hiroshi, K., and Taro, Y. 1988. Air entrainment and thermal radiation from heptane pool fires. Fire Technol., 24, 33–47. doi:10.1007/BF01039639
  • Horton, T.W., and Kempel, R.W. 1988. Flight test experience and controlled impact of a remotely piloted jet transport aircraft. NASA Tech. Memo., 4084, 44 P (NASA-TM–4084).
  • Hostikka, S., Silde, A., Sikanen, T., Vepsä, A., Paajanen, A., and Honkanen, M. 2015. Experimental characterisation of sprays resulting from impacts of liquid-containing projectiles. Nucl. Eng. Des., 295, 388–402. doi:10.1016/j.nucengdes.2015.09.008
  • Jackson, K.E., Boitnott, R.L., Fasanella, E.L., Jones, L.E., and Lyle, K.H. 2004. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center, 4th Triennial Int. Fire & Cabin Safety Research Conf., Lisbon, Portugal.
  • Jepsen, R., Jensen, K., and Hern, T.O. 2004. Water dispersion modeling and diagnostics for water slug impact test. SEM X International Congress. pp. 1–8. Costa Mesa: California.
  • Koseki, H. 1989. Combustion properties of large liquid pool fires. Fire Technol., 25, 241–255. doi:10.1007/BF01039781
  • Kuchta, J.M. 1973. Fire and explosion manual for aircraft accident investigators (No. PMSRC-4193). Bureau Of Mines Pittsburgh Pa Pittsburgh Mining And Safety Research Center.
  • Kuo, K.K. 1996. Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, Vol.1, American Institute of Aeronautics and Astronautics, Reston, VA.
  • Large, J.H. 2003. The implications of 11 September for the nuclear industry. Disarmament Forum. pp. 29–38.
  • Lees, F. 2012. Lees’ Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Butterworth-Heinemann, Oxford, UK.
  • Luther, W., and Müller, W.C. 2009. FDS simulation of the fuel fireball from a hypothetical commercial airliner crash on a generic nuclear power plant. Nucl. Eng. Des., 239, 2056–2069. doi:10.1016/j.nucengdes.2009.04.018
  • Makhviladze, G., Roberts, J., and Yakush, S. 1997. Modelling the fireballs from methane releases. Fire Saf. Sci., 5, 213–224. doi:10.3801/IAFSS.FSS.5-213
  • Makhviladze, G.M., Roberts, J.P., and Yakush, S.E. 1999. Combustion of two-phase hydrocarbon fuel clouds released into the atmosphere. Combust. Flame, 2180, 583–605.
  • Marshall, V.C. 1987. Major Chemical Hazards, Ellis Horwood, Chichester.
  • McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., and Overholt, K. 2013. Fire dynamics simulator, user’s guide. NIST Spec. Publ., 1019, 20.
  • Miguel, A.S. 1978. Antimisting fuel kinematics related to aircraft crash landings. J. Aircr., 15, 137–142.
  • Mlakar, P.F., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan, L.T., and Sozen, M.A. 2003. The Pentagon Building Performance Report, ASCE, Reston, VA.
  • Moussa, N.A. 1990. Flammability of aircraft fuels. SAE Technical Paper.
  • Mozingo, D.W., Barillo, D.J., and Holcomb, J.B. 2005. The Pope Air Force Base aircraft crash and burn disaster. J. Burn Care Res., 26, 132–140.
  • Muto, K., Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Suzuki, M., Ohrui, S., Von Riesemann, W.A., Bickel, D.C., and Parrish, R.L. 1989. Full-Scale Aircraft Impact Test for Evaluation of Impact Forces, Part 2: Analysis of the Results. Transactions of the 10th International Conference on Structural Mechanics in Reactor Technology (SMiRT 10), Anaheim, CA, USA.
  • NTSB. 2015. Steep climb and uncontrolled descent during Takeoff National Air Cargo, Inc., dba National Airlines Boeing 747 400 BCF, N949CA Bagram, Afghanistan April 29, 2013. Washington, DC.
  • Piers, M. 1998. Methods and Models for the Assessment of Third Party Risk Due to Aircraft Accidents in the Vicinity of Airports and Their Implications for Societal Risk, In: Quantified Societal Risk and Policy Making. Springer: Boston, MA, pp. 166–204.
  • Pietersen, C. 1985. Analysis of the LPG accident in San Juan Ixhuatepec, Mexico City, November 19, 1984. Technical Report. TNO, The Hague.
  • Poinsot, T., and Veynante, D. 2001. Theoretical and Numerical Combustion, Edwards, Philadelphia, PA.
  • Ranz, W.E., and Marshall, W.R. 1952. Evaporation from drops. Chem. Eng. Prog., 48, 141–146.
  • Reporter Daily Mail. 2013. Did cargo shift cause Bagram 747 crash? Straps that tied down 16-ton MRAP vehicles “broke before plane plummeted to Earth”. Mail Online.
  • Shelke, A., Maheshwari, N.K., Gera, B., and Singh, R.K. 2017. CFD analysis of hydrocarbon fireballs. Combust. Sci. Technol., 189, 1440–1466. doi:10.1080/00102202.2017.1296433
  • Shelke, A.V., Gera, B., Maheshwari, N.K., and Singh, R.K. 2018. Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile. KERNTECHNIK, 83, 1–13. doi:10.3139/124.110850
  • Silde, A., Hostikka, S., and Kankkunen, A. 2011. Experimental and numerical studies of liquid dispersal from a soft projectile impacting a wall. Nucl. Eng. Des., 241, 617–624. doi:10.1016/j.nucengdes.2010.07.033
  • Smith, T.F., Shen, Z.F., and Friedman, J.N. 1982. Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transfer, 104, 602–608.
  • Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Orui, S., Von Riesemann, W.A., Bickel, D.C., and Parks, M.B. 1993. Full-scale aircraft impact test for evaluation of impact force. Nucl. Eng. Des., 140, 373–385. doi:10.1016/0029-5493(93)90119-T
  • Thomson, R.G., and Caiafa, C. 1982. Designing for aircraft structural crashworthiness. J. Aircr., 19, 868–874.
  • Tieszen, S.R. 1995. Fuel Dispersal Modeling for Aircraft-Runway Impact Scenarios, Sandia Natl. Labs., Albuquerque, NM (United States).
  • TNO Yellow Book. 1989. Methods for the Calculation of the Physical Effects of the Escape of Dangerous Material, Rijswijk, The Netherlands, TNO. Chapter 6.
  • Von Riesemann, W.A., Parrish, R.L., Bickel, D.C., Heffelfiner, S.R., Muto, K., Sugano, T., Tsubota, H., Koshika, N., Suzuki, M., and Ohrui, S. 1989. Full-Scale Aircraft Impact Test for Evaluation of Impact Forces, Part 1: Test Plan, Test Method, and Test Results. Proceedings of the 10th International Conference on SMiRT, Los Angeles, USA.
  • Wang, Y., Chatterjee, P., and de Ris, J.L. 2011. Large eddy simulation of fire plumes. Proc. Combust. Inst., 33, 2473–2480.
  • Wierzbicki, T., and Hendry-Brogan, M. 2002. Aircraft impact damage. Access. online http://web.mit.edu/civenv/wtc/PDFfiles31–64.
  • Wolfson, M., Klingle-Wilson, D., Donovan, M., Cullen, J., Neilley, D., Liepins, M., Hallowell, R., DiStefano, J., Clark, D., and Isaminger, M. 1990. Characteristics of thunderstorm-generated low altitude wind shear: a survey based on nationwide Terminal Doppler Weather Radar testbed measurements, in: decision and control, 1990. Proceedings of the 29th IEEE Conference On. IEEE, pp. 682–688.
  • Yeoh, G.H., and Yuen, K.K. 2009. Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice, Butterworth-Heinemann, Oxford, UK.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.