383
Views
13
CrossRef citations to date
0
Altmetric
Articles

Effect of Swirl Strength on the Flow and Combustion Characteristics of Pulverized Biomass Flames

, , , , , , , & show all
Pages 629-644 | Received 31 Oct 2017, Accepted 03 Jul 2018, Published online: 26 Jul 2018

References

  • Al-Attab, K.A., and Zainal, Z.A. 2011. Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion. Applied Energy, 88, 1084–1095.
  • ANSYS. 2012. ANSYS Fluent User’s Guide Release 14.0, ANSYS. Inc, Canonsburg PA, USA.
  • Bhuiyan, A.A., and Naser, J. 2015. Computational modelling of co-firing of biomass with coal under oxy-fuel condition in a small scale furnace. Fuel, 143, 455–466.
  • Chen, Z., Li, Z., Jing, J., Chen, L., Wu, S., and Yao, Y. 2009. Gas/particle flow characteristics of two swirl burners. Energ. Convers. Manage., 50(5), 1180–1191.
  • Choi, C.R., and Kim, C.N. 2009. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500MWe tangentially fired pulverized-coal boiler. Fuel, 88(9), 1088.
  • Eaton, A.M., Smoot, L.D., Hill, S.C., and Eatough, C.N. 1999. Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog. Energy Combust. Sci., 25, 387–436.
  • Elorf, A., Mrad, N.K., Boushaki, T., Sarh, B., Chaoufi, J., Bostyn, S., and Gokalp, I. 2016. Swirl motion effects on flame dynamic of pulverized olive cake in vertical furnace. Comb. Sci. Technol., 188, 1951–1971.
  • Gupta, A.K., Lilley, D.G., and Syred, N. 1984. Swirl Flows, Abacus Press, Tunbridge Wells, UK.
  • Ilbas, M. 2005. The effect of thermal radiation and radiation models on hydrogen–hydrocarbon combustion modelling. Intern. J. Hydrogen. Energ., 30, 1113–1126.
  • Ilbas, M., Ahin, M., and Karyeyen, S. 2018. 3D numerical modelling of turbulent biogas combustion in a newly generated 10 KW burner. J. Energ. Instit., 91, 87–99.
  • Ilbas‚, M., Karyeyen, S., and Yilmaz, I. 2016. Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor. International J. Hydrog. Energ., 41, 7185–7191.
  • Kangwanpongpan, T., Da Silva, R.C., and Krautz, H.J. 2012. Prediction of oxy-coal combustion trough an optimized weighted sum of gray gases model. Energy, 41, 244–251.
  • Khademi Shamami, K., and Birouk, M. 2008. Assessment of the performances of RANS models for simulating swirling flows in a can-combustor. Open. Aerospace. Eng. J., 1, 8–27.
  • Kneer, R., and Scherer, V. 2013. The Effect of Char Kinetics on the Combustion of Pulverized Coal under Oxyfuel Conditions Internationaler Wissenschaftsverlag Sierke, VERLAG, Aachen, Germany. ISBN 13: 978-3-86844-559-6.
  • Kurose, R., Ikeda, M., Makino, H., Kimoto, M., and Miyazaki, T. 2004. Pulverized coal combustion characteristics of high-fuel-ratio coals. Fuel, 83(13), 1777–1785.
  • Launder, B.E., and Spalding, D.B. 1974. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. and Eng., 3, 269–289.
  • Lu, G., Yan, Y., Cornwell, S., Whitehouse, M., and Riley, G. 2008. Impact of co-firing coal and biomass on flame characteristics and stability. Fuel, 87(7), 1133–1140.
  • Mansouri, Z., Aouissi, M., and Boushaki, T. 2016. Numerical study of swirl effects on the flow and flame dynamics in a lean premixed combustor. International J. Heat. Techno., 34, 227–235.
  • Merlo, N., Boushaki, B., Chauveau, C., Depersis, S., Pillier, L., Sarh, B., and Gokalp, I. 2014. Combustion Characteristics of methane-oxygen enhanced air turbulent non-premixed swirling flames. Exp. Thermal Fluid Sci., 56, 53–60.
  • Musa, O., Changsheng, Z., Xiong, C., and Lunkun, G. 2016. Prediction of swirling cold flow in a solid-fuel ramjet engine with a modified rotation/curvature correction SST turbulence model. Appl. Therm. Eng., 105, 737–754.
  • Oevermann, M., Gerber, S., and Behrendt, F. 2009. Euler–lagrange/DEM simulation of wood gasification in a bubbling fluidized bed reactor. Particuology, 7, 307–316.
  • Phuoc, T.X., and Durbetaki, P. 1987. Pulverized coal conversion in downflow gasifier. I. J. Numer. Meth. Engineer., 24, 203–218.
  • Ravi, I.S., Anders, B., and Mikko, H. 2013. CFD modeling to study fluidized bed combustion and gasification. Appl. Therm. Eng., 52, 585–614.
  • Siegel, R., and Howell, J.R. (1992) Fundamentals and material properties for radiative transferin absorbing, emitting, and scattering media. Dans Thermal Radiation Heat Transfer,Chapitre 11, 419–497. Taylor and Francis, New York,
  • Stone, C., and Menon, S. 2002. Swirl control of combustion instabilities in a gas turbine combustor. Proc. Combust. Inst., 29, 155–160.
  • Tabet, F., and Gokalp, I. 2015. Review of CFD based models for co-firing coal and biomass. Renew. Sustain. Energy. Rev, 51, 1101–1114.
  • Toporov, D., Bocian, P., Heil, P., Kellermann, A., Stadler, H., Tschunko, S., Forster, M., and Kneer, R. 2008. Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combust. Flame., 155, 605–618.
  • Visser, B.M., Smart, J.P., Van De Kamp, W.L., and Weber, R. (1990) Measurements and predictions of quarl zone properties of swirling pulverised coal flames. Twenty-Third Symposium (International) on Combustion/The Combustion Institute, 949–955
  • Xinhui, Z., Mohsen, G., and Albert, R. 2013. Numerical modeling of co-firing a light density biomass, oat (Avena sativa) hulls, and chunk coal in fluidized bed boiler. Biomass Bioenergy, 56, 239–246.
  • Yılmaz, I. 2013. Effect of swirl number on combustion characteristics in a natural gas diffusion flame. J. Energ. Resour., 135(4), 042204.
  • Yin, C., Lasse, A.R., and Søren, K.K. 2008. Grate-firing of biomass for heat and power production. Prog. Energ. Combust., 34, 725–754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.