302
Views
8
CrossRef citations to date
0
Altmetric
Articles

Large Eddy Simulation on the Flame Structure for Split Injections of n-dodecane at Different Temperatures and Densities

, &
Pages 2224-2244 | Received 20 Jan 2018, Accepted 05 Jul 2018, Published online: 08 Aug 2018

References

  • Agarwal, A.K., Singh, A.P., and Maurya, R.K. 2017. Evolution, challenges and path forward for low temperature combustion engines. Prog. Energy Combust. Sci., 61, 1–56.
  • Ameen, M.M., Kundu, P., and Som, S. 2016. Novel tabulated combustion model approach for lifted spray flames with large eddy simulations. SAE Int. J. Engines, 9, 2056–2065.
  • Amsden, A.A. 1997. KIVA3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves, Los Alamos National Lab: Los Alamos.
  • Bekdemir, C., Somers, L.M.T., de Goey, L.P.H., Tillou, J., and Angelberger, C. 2013. Predicting diesel combustion characteristics with Large-Eddy Simulations including tabulated chemical kinetics. Proc. Combust. Inst., 34, 3067–3074.
  • Bhattacharjee, S., and Haworth, D.C. 2013. Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combust. Flame, 160, 2083–2102.
  • Blomberg, C.K., Zeugin, L., Pandurangi, S.S., Bolla, M., Boulouchos, K., and Wright, Y.M. 2016. Modeling split injections of ECN “Spray A” using a conditional moment closure combustion model with RANS and LES. SAE Int. J. Engines, 9, 2107–2119.
  • Bolla, M., Chishty, M.A., Hawkes, E.R., and Kook, S. 2017. Modeling combustion under engine combustion network Spray A conditions with multiple injections using the transported probability density function method. Int. J. Engine Res., 18, 6–14.
  • Borghesi, G., Mastorakos, E., and Cant, R.S. 2013. Complex chemistry DNS of n-heptane spray autoignition at high pressure and intermediate temperature conditions. Combust. Flame, 160, 1254–1275.
  • Borz, M.J., Kim, Y., and O’Connor, J. 2016. The Effects of Injection Timing and Duration on Jet Penetration and Mixing in Multiple-Injection Schedules, SAE International: Detroit, USA.
  • Bruneaux, G., and Maligne, D. 2009. Study of the mixing and combustion processes of consecutive short double diesel injections. SAE Int. J. Engines, 2, 1151–1169.
  • Cung, K., Moiz, A., Johnson, J., Lee, S.-Y., Kweon, C.-B., and Montanaro, A. 2015. Spray–combustion interaction mechanism of multiple-injection under diesel engine conditions. Proc. Combust. Inst., 35, 3061–3068.
  • Desantes, J.M., Pastor, J.V., García-Oliver, J.M., and Briceño, F.J. 2014. An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combust. Flame, 161, 2137–2150.
  • El-Asrag, H., and Menon, S. 2007. Large eddy simulation of bluff-body stabilized swirling non-premixed flames. Proc. Combust. Inst., 31, 1747–1754.
  • García-Oliver, J.M., Malbec, L.-M., Toda, H.B., and Bruneaux, G. 2017. A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combust. Flame, 179, 157–171.
  • Gong, C., Jangi, M., and Bai, X.-S. 2014a. Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Appl. Energy, 136, 373–381.
  • Gong, C., Jangi, M., Lucchini, T., D’Errico, G., and Bai, X.-S. 2014b. Large eddy simulation of air entrainment and mixing in reacting and non-reacting diesel sprays. Flow, Turb. Comb., 93, 385–404.
  • Gonzalez-Juez, E.D., Kerstein, A.R., Ranjan, R., and Menon, S. 2017. Advances and challenges in modeling high-speed turbulent combustion in propulsion systems. Prog. Energy Combust. Sci., 60, 26–67.
  • Irannejad, A., Banaeizadeh, A., and Jaberi, F. 2015. Large eddy simulation of turbulent spray combustion. Combust. Flame, 162, 431–450.
  • Jarrahbashi, D., Kim, S., and Genzale, C.L. 2017a. Simulation of combustion recession after end-of-injection at diesel engine conditions. J. Eng. Gas Turbine. Power., 139, 102804.
  • Jarrahbashi, D., Kim, S., Knox, B.W., and Genzale, C.L. 2017b. Computational analysis of end-of-injection transients and combustion recession. Int. J. Engine Res., 18, 1088–1110.
  • Ji, W., Zhao, P., He, T., He, X., Farooq, A., and Law, C.K. 2016. On the controlling mechanism of the upper turnover states in the NTC regime. Combust. Flame, 164, 294–302.
  • Kerstein, A.R. 1988. A linear-eddy model of turbulent scalar transport and mixing. Combust. Sci. Technol., 60, 391–421.
  • Knox, B.W., and Genzale, C.L. 2017. Scaling combustion recession after end of injection in diesel sprays. Combust. Flame, 177, 24–36.
  • Kundu, P., Ameen, M.M., and Som, S. 2017. Importance of turbulence-chemistry interactions at low temperature engine conditions. Combust. Flame, 183, 283–298.
  • Lim, J., Lee, S., and Min, K. 2010. Combustion modeling of split injection in HSDI diesel engines. Combust. Sci. Technol., 183, 180–201.
  • Lu, Z., Zhou, L., Ren, Z., Lu, T., and Law, C.K. 2016. Effects of spray and turbulence modelling on the mixing and combustion characteristics of an n-heptane spray flame simulated with dynamic adaptive chemistry. Flow, Turb. Comb., 97, 609–629.
  • Martinez, D.M., Jiang, X., Moulinec, C., and Emerson, D. 2014. Numerical assessment of subgrid scale models for scalar transport in large-eddy simulations of hydrogen-enriched fuels. Int. J. Hydrogen Energy, 39, 7173–7189.
  • Moiz, A.A., Ameen, M.M., Lee, S.-Y., and Som, S. 2016. Study of soot production for double injections of n-dodecane in CI engine-like conditions. Combust. Flame, 173, 123–131.
  • Moiz, A.A., Cung, K.D., and Lee, S.-Y. 2017a. Ignition, lift-off, and soot formation studies in n-dodecane split injection spray-flames. Int. J. Engine Res., 18, 1077–1087.
  • Moiz, A.A., Cung, K.D., and Lee, S.-Y. 2017b. Simultaneous schlieren–PLIF studies for ignition and soot luminosity visualization with close-coupled high-pressure double injections of n-dodecane. J. Energy Resour. Technol., 139, 012207.
  • Moiz, A.A., Som, S., Bravo, L., and Lee, S.-Y. 2015. Experimental and Numerical Studies on Combustion Model Selection for Split Injection Spray Combustion, SAE International: Detroit, USA.
  • Musculus, M.P.B., Miles, P.C., and Pickett, L.M. 2013. Conceptual models for partially premixed low-temperature diesel combustion. Prog. Energy Combust. Sci., 39, 246–283.
  • O’Rourke, P.J. 1981. Collective Drop Effects on Vaporizing Liquid Sprays, Engineering Los Alamos National Lab: New Mexico, USA.
  • Patterson, M.A., and Reitz, R.D. 1998. Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission, SAE International: Detroit, USA.
  • Payri, R., García-Oliver, J.M., Xuan, T., and Bardi, M. 2015. A study on diesel spray tip penetration and radial expansion under reacting conditions. Appl. Therm. Eng., 90, 619–629.
  • Pei, Y., Hawkes, E.R., Bolla, M., Kook, S., Goldin, G.M., Yang, Y., Pope, S.B., and Som, S. 2016a. An analysis of the structure of an n-dodecane spray flame using TPDF modelling. Combust. Flame, 168, 420–435.
  • Pei, Y., Hu, B., and Som, S. 2016b. Large-eddy simulation of an n-dodecane spray flame under different ambient oxygen conditions. J. Energy Resour. Technol., 138, 032205-1-10
  • Pei, Y., Som, S., Pomraning, E., Senecal, P.K., Skeen, S.A., Manin, J., and Pickett, L.M. 2015. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combust. Flame, 162, 4442–4455.
  • Pickett, L.M., 2012. Engine Combustion Network <http://www.sandia.gov/ecn/>.
  • Saghafian, A., Shunn, L., Philips, D.A., and Ham, F. 2015. Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach. Proc. Combust. Inst., 35, 2163–2172.
  • Salehi, F., Cleary, M.J., Masri, A.R., Ge, Y., and Klimenko, A.Y. 2017. Sparse-Lagrangian MMC simulations of an n-dodecane jet at engine-relevant conditions. Proc. Combust. Inst., 36, 3577–3585.
  • Sen, B.A., and Menon, S. 2009. Turbulent premixed flame modeling using artificial neural networks based chemical kinetics. Proc. Combust. Inst., 32, 1605–1611.
  • Skeen, S., Manin, J., and Pickett, L.M. 2015. Visualization of ignition processes in high-pressure sprays with multiple injections of n-dodecane. SAE Int. J. Engines, 8, 696–715.
  • Stephen, B.P. 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys., 6, 35.
  • Wehrfritz, A., Kaario, O., Vuorinen, V., and Somers, B. 2016. Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds. Combust. Flame, 167, 113–131.
  • Wei, H., Zhao, W., Zhou, L., Chen, C., and Shu, G. 2018a. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model. Combust. Theor. Model., 22, 237–263.
  • Wei, H., Zhao, W., Zhou, L., and Shu, G. 2018b. Numerical investigation of diesel spray flame structures under diesel engine-relevant conditions using large eddy simulation. Combust. Sci. Technol., 190, 909–932.
  • Yao, M., Zheng, Z., and Liu, H. 2009. Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. Energy Combust. Sci., 35, 398–437.
  • Yao, T., Pei, Y., Zhong, B.-J., Som, S., Lu, T., and Luo, K.H. 2017. A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations. Fuel, 191, 339–349.
  • Zhou, L., Lu, Z., Ren, Z., Lu, T., and Luo, K. 2015a. Numerical analysis of ignition and flame stabilization in an n-heptane spray flame. Int. J. Heat Mass Transf., 88, 565–571.
  • Zhou, L., Luo, K.H., Qin, W., Jia, M., and Shuai, S.J. 2015b. Large eddy simulation of spray and combustion characteristics with realistic chemistry and high-order numerical scheme under diesel engine-like conditions. Energy Convers. Manage., 93, 377–387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.