149
Views
1
CrossRef citations to date
0
Altmetric
Articles

Implementation of heterogeneous detonation in a pulsed combustor – PDE model

, &
Pages 2245-2260 | Received 22 Nov 2017, Accepted 08 Jul 2018, Published online: 09 Aug 2018

References

  • Alhussan, K., Assad, M.C., Penyazkov, О.G., and Sevruk, К.L. 2012. Formation of detonation in a pulsed combustion chamber with a porous obstacle. Inzh. Fiz. Zh., 85(5), 968–973
  • Anand, V., George, A.S., De Luzan, C.F., and Gutmark, E. 2017. Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities. Proc. of the 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, USA (992).
  • Assad, M.C., Alhussan, K., Penyazkov, О.G., and Sevruk, К.L. 2014. Khim. Fiz., 33(3), 62
  • Assad, M.S., Alhussan, K., Penyazko, V.O.G., and Sevrouk, K.L. 2012. Detonation in the fuel-oxidizer flow in the pulsed combustor. Proc. of 15th International Symposium on Flow Visualization. Minsk, Belarus, 99.
  • Assad, M.S., and Penyazkov, O.G. 2013. Detonation in heptane/oxygen/air mixtures in a pulsed combustor. Proc. of 2013 International Autumn Seminar on Propellants, Explosives and Pyrotechnics (2013 IASPEP). Chengdu, Sichuan Province, China, 284–286.
  • Assad, M.S., Penyazkov, O.G., Sevrouk, K.L., and Yaumenchycau, M.L. 2013. Detonation acceleration research in pulsed combustor. 2013. Proc. of 24nd Int. Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), 131.
  • Baklanov, D.I., Gvozdeva, L.G., Kaltaev, A., and Scherbak, N.V. 2005. Deflagration-to-detonation transition in a turbulent flow in a pulse detonation engine.Khim. Fiz., 24(7), 11
  • Baklanov, D.I., Gvozdeva, L.G., and Scherbak, N.B. 2003. Investigation of Transition of Deflagration to Detonation in Moving Mixtures of Combustible Gases. Confined detonations and pulsed detonation engines Roy, G.D. et al., eds., Moscow: Torus Press, 271
  • Basevich, V.Y., Frolov, S.M., and Posviansky, V.S. 2005. Conditions for the existence of stationary heterogeneous detonation.Khim. Fiz., 24(7), 58
  • Benedick, W.B., Tieszen, S.R., Knystautas, R., and Lee, J.H.S. 1991. Dynamics of detonations and explosions: detonations. Progress in Astronautics and Aeronautics, Kuhl, A.L., Leyer, J.C., Borisov, A.A., and Sirignano, W.A., eds., AIAA Inc., 133, 297
  • Bozhenkov, S.A., Starikovskaia, S.M., and Starikovskii, A.Y. 2002. Mechanism of strengthening a shock wave when at the cold flame zone. Advances in confined detonations, Roy, G., Frolov, S., Santoro, R., and Tsyganov, S., eds., Moscow: Torus Press, 259
  • Breitung, W., Chan, C.K., Dorofeev, S. et al. 2000. Flame Acceleration and Deflagration-to-Detonation Transition in Nuclear Safety. OECD State of the Art Report by a Group of Experts. NEA/CSNI/R(2000)7.
  • Brophy, C.M., Sinibaldi, J.O., Wang, F. et al. 2004. Initiator performance for liquid-fueled pulse detonation engines.AIAA, Paper No. 2004–0834.
  • Brophy, С.М., Netzer, D.W., Sinibaldi, J., and Jonson, R. 2001. Initiation of heterogeneous detonation in tubes with coils and Shchelkin spiral High-speed deflagration and detonation: fundamentals and control, Roy, G., Frolov, S., Netzer, D., and Borisov, A., eds., Moscow: Torus Press, 207
  • Dabora, E.K. 1991. Dynamics of detonations and explosions: detonations. Progress in Astronautics and Aeronautics, Kuhl, A.L., Leyer, J.C., Borisov, A.A., and Sirignano, W.A., eds., AIAA, Vol. 133, pp. 311
  • Dorofeev, S.B., Sidorov, V.P., Kuznetsov, M.S., et al. 2000. ShockWaves, 10(3), 137
  • Eder, A., Gerlach, С., and Mayinger, F. 2000. Proc. 22nd Intern. Symp. on Shock Waves. University of Southampton, l., Vol. 205.
  • Fotia, M., Schauer, F., and Hoke, J. 2015. Experimental testing of a rotating detonation engine coupled to nozzles at conditions approaching flight. Proc. of the 25th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Leeds, UK Vol. 15.
  • Frolov, S.M., Aksenov, V.S., and Basevich, V.Y. 2005a. Initiation of detonation in liquid fuel spraying. Khim. Fiz., 24(7), 69
  • Frolov, S.M., Aksenov, V.S., and Basevich, V.Y. 2005b. Reduction of the predetonation distance in the drop explosive mixture by combined means. Dokl. Akad. Nauk, 401(2), 201
  • Frolov, S.M., Basevich, V.Y., Aksenov, V.S., and Polikhov, S.A. 2004. Initiation of detonation in liquid fuel spraying by successive electrical discharges. Dokl. Akad. Nauk, 394(4), 503
  • Frolov, S.M., Basevich, V.Y., Aksenov, V.S., and Polikhov, V.S. 2003. Initiation of Confined Detonation by Electric Discharges.Confined detonations and pulse detonation engines, Roy, G., Frolov, S., Santoro, R., and Tsyganov, S. eds., Moscow: Torus Press, 157
  • Frolov, S.M., Basevich, V.Y., Aksenov, V.S., and Polikhov, V.S. 2005. Spray Detonation Initiation by Controlled Triggering of Electric Discharges,Propulsion and Power, Propulsion and Power. 21(1), 54
  • Galligan, C.E., Duboisy, C., Stowe, R., Kaliaguine, S., and Niaki, H. 2005. Heterogeneous catalytic decomposition of JP-10: for use in a pulsed engine. Khim. Fiz., 24(7), 91
  • Higgins, A.J., Pinard, P., Yoshinaka, A.C., and Lee, J.H.S. 2001. Sensitization of fuel-air mixtures for deflagration-to-detonation transition.High-speed deflagration and detonation, Roy, G., Frolov, S., Netzer, D., and Borisov, A., eds., Moscow: Torus Press, 45
  • Hoffman, N. 1940. Reaction propulsion by intermittent detonative combustion. German Ministry of Supply, AI152365, Volkenrode Translation.
  • Kaltayev, A.J., Leblanc, J., and Fujiwara, T. 1999. Proc. 17th Intern. Colloq. On Dynamics of Explosions and Reactive Systems (ICDERS). Heidelberg, Germany, 126.
  • Kiyanda, C.B., Connolly-Boutin, S., Joseph, V., Mi, X., Ng, H.D., and Higgins, A.J. 2017. Small size rotating detonation engine: scaling and minimum mass flow rate. Proc. of the 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, USA (1133).
  • Knowlen, C., and Kurosaka, M. 2017. Orderly wave initiation in a rotating detonation engine. Proc. of the 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, USA (1088).
  • Kuznetsov, M., Alekseev, V., and Matsukov, I. 2002. DDT in a smooth tube filled with a hydrogen–oxygen mixture.Advances in confined detonations, Roy, G., Frolov, S., Santoro, R., and Tsyganov, S. eds., Moscow: Torus Press, 26
  • Lee, J.H. 1987. On the Universal Role of Turbulence in the Propagation of Deflagrations and Detonations. Computational Fluid Dynamics and Reacting Gas Flows, Engquist, B. et al., eds., 9
  • Lee, J.H.S., Knystautas, R., and Freiman, A. 1984. High speed turbulent deflagrations and transition to detonation in H2-air mixtures. Combust. Flame, 56, 227.
  • Matsuoka, K., Muto, K., Kasahara, J., Watanabe, H., Matsuo, A., and Endo, T. 2015. Development of a liquid-purge method for valveless pulse detonation combustor using liquid fuel and oxidizer. Proc. of the 25th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Leeds, UK (81).
  • Medvedev, S.V., Polenov, A.N., Khimik, S.V., and Gelvand, B.E. 2010. Deflagration-to-detonation transition of air/binary fuels mixtures in a channel with obstacles. Khim. Fiz., 29(1), 58
  • Nishimura, J., Ishihara, K., Goto, K., Nakagami, S., Matsuoka, K., Kasahara, J., Matsuo, A., Funaki, I., Mukae, H., Yasuda, K., Nakata, D., Higashino, K., and Moriai, H. 2017. Performance evaluation of a rotating detonation engine. Proc. of the 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, USA (1098).
  • Paxson, D.E. 2014. Numerical analysis of a rotating detonation engine in the relative reference frame. 52nd Aerospace Sciences Meeting, AIAA SciTech Forum. AIAA 2014-0284.
  • Peraldi, O., Knystautas, R., and Lee, J.H.S. 1986. Proc. 21th Symp. (Intern.) on Combustion, Pittsburgh, PA, Combust. Inst., 1629.
  • Rankin, B.A., Codoni, J.R., Cho, K.Y., Hoke, J.L., and Schauer, F.R. 2017. Mid-infrared imaging of a non-premixed rotating detonation engine. Proc. of the 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, USA (833).
  • Rhee, H., Ishiyama, C., Higashi, J., Akira, K., Matsuoka, K., Kasahara, J., Matsuo, A., and Funaki, I. 2017. Experimental study on a rotating detonation turbine engine with an axial turbine. Proc. of the 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, USA (1080).
  • Rocourt, X., Gillard, P., Socket, I., Piton, D., and Prigent, A. 2007. ShockWaves, 16(3), 233
  • Rodriguez, V., Vidal, P., and Zitoun, R. 2017. Experimental observations of semi-confined steadily- rotating detonation. Proc. of the 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, USA (1084).
  • Roy, G.D., Frolov, S.M., Borisov, A.A., and Netzer, D.W. 2004. Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combustion Sci., 30(6), 545–672.
  • Sevrouk, K.L., Assad, M.S., Yaumenchykau, M.L., and Penyazkov, O.G. 2013. Detonation acceleration investigation in the pulsed combustor. Proc. of XXVIII International Conference on Interaction of Intense Energy Fluxes with Matter. March 1-6, 2013, Elbrus, Russia. – Moscow, 89.
  • Shchelkin, K.I., and Sokolik, A.S. 1937. On the theory of the development of detonation in gases. Zh. Fiz. Khim., 10, 484.
  • Shchelkin, K.I., and Troshin, Y.K. 1963. Gasodynamics of combustion, Izd. AN SSSR, Moscow
  • Smirnov, N.N., and Boichenko, А.P. 1986. Deflagration-to-detonation transition in gasoline-air mixtures. Fiz. Gor. Vzryva., 2, 121.
  • Sokolik, A.S. 1960. Self-ignition, Flame, and Detonation in Gases, Izd. AN SSSR, Moscow
  • St. George, A.C., Driscoll, R.B., Anand, V., Munday, D.E., and Gutmark, E.J. 2015. Fuel blending as a means to achieve initiation in a rotating detonation engine. 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, AIAA 2015-0633.
  • Starik, A.M., and Titova, N.S. 2001. On the kinetic mechanisms of initiation of combustion of hydrogen-air mixtures in a supersonic flow behind a shock wave upon excitation of molecular oscillations of initial reagents. Khim Fiz., 20(5), 17.
  • Tang, X.-M., Wang, J.-P., and Shao, Y.-T. 2015. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combust. Flame, 162(4), 997–1008.
  • Zeldovich, Y.B. 1940. To the problem of the use of the detonative combustion energy. Zh. Prikl. Fiz., X(17), 1453–1461.
  • Zhang, L., Zhang, S., and Wang, J. 2017. 3D Numerical study on continuous detonation engine using reactive Navier-Stokes equations. Proc. of the 26th Int. Colloquium on the Dynamics of Explosions and Reactive Systems. Boston, USA (1066).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.