127
Views
1
CrossRef citations to date
0
Altmetric
Articles

Infrared Absorption Measurements of the Velocity of a Premixed Hydrogen/Air Flame Propagating in an Obstacle-Laden Tube

, , , & ORCID Icon
Pages 696-710 | Received 27 Oct 2017, Accepted 17 Jul 2018, Published online: 30 Jul 2018

References

  • Akkerman, V., Bychkov, V., Petchenko, A., and Eriksson, L.E. 2006. Accelerating flames in cylindrical tubes with nonslip at the walls. Combust. Flame, 145, 206.
  • Arens, E.E., Youngquist, R.C., and Starr, S.O. 2014. Intensity calibrated hydrogen flame spectrum. Int. J. Hydrogen Energy, 39, 9545.
  • Beccantini, A., and Studer, E. 2009. The reactive Riemann problem for thermally perfect gases at all combustion regimes. Int. J. Numer. Methods Fluids, 76, 662.
  • Boeck, L.R., Mével, R., Fiala, T., Hasslberger, J., and Sattelmayer, T. 2016. High-speed OH-PLIF imaging of deflagration-to-detonation transition in H2 air mixtures. Exp. Fluids, 57, 105.
  • Boulal, S., Vidal, P., and Zitoun, R. 2016. Experimental investigation of detonation quenching in non-uniform compositions. Combust. Flame, 172, 222.
  • Breitung, W., Chan, C., Dorofeev, S.B., Eder, A., Gelfand, B., Heitsch, M., Klein, R., Malliakos, A., Shepherd, J.E., Studer, E., and Thibault, P. 2000. State-of-the-art report on flame acceleration and deflagration-to-detonation transition in nuclear safety. Technical report, Nuclear Energy Agency.
  • Bychkov, V., Akkerman, V., Valiev, V., and Law, C.K. 2010. Influence of gas compression on flame acceleration in channels with obstacles. Combust. Flame, 157, 2008.
  • Ciccarelli, G., Fowler, C.J., and Bardon, M. 2005. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube. Shock Waves, 14(3), 161.
  • Dorofeev, S.B., Kuznetsov, M.S., Alekseev, V.I., Efimenko, A.A., and Breitung, W. 2001. Evaluation of limits for effective flame acceleration in hydrogen mixtures. J. Loss Prev. Process Ind., 14, 583.
  • Edwards, B.N., and Burch, D.E. 1965. Absorption of -micron Helium-Neon laser emission by methane in the atmosphere. J. Opt. Soc. Am., 55(2), 174.
  • Goulier, J., Comandini, A., Halter, F., and Chaumeix, N. 2017. Experimental study on turbulent expanding flames of lean hydrogen/air mixtures. Proc. Combust. Inst., 36, 2823.
  • Johansen, C.T., and Ciccarelli, G. 2009. Visualization of the unburned gas flow field ahead of an accelerating flame in a obstructed square channel. Combust. Flame, 156, 405.
  • Klingbeil, A.E., Jeffries, J.B., and Hanson, R.K. 2006. Temperature- and pressure-dependent absorption cross-sections of gaseous hydrocarbons at 3.39 μ. Measuring Sci. Technol., 17, 1950.
  • Kuznetsov, M., Alekseev, V., Bezmelnitsyn, A., Breitung, W., Dorofeev, S.B., Matsukov, I., Veser, A., and Yankin, Y. 1999. Effect of obstacle geometry on behavior of turbulent flames. Report IAE-6137/3 and FZKA-6328.
  • Kuznetsov, M., Ciccarelli, G., Dorofeev, S.B., Alekseev, V., Yankin, Y., and Kim, T.H. 2002. DDT in methane-air mixtures. Shock Waves, 12, 215.
  • Lee, J.J., Dupré, G., Knystautas, R., and Lee, J.H. 1995. Doppler interferometry study of unstable detonations. Shock Waves, 5, 175.
  • Mevel, R., Boettcher, P.A., and Shepherd, J.E. 2012. Absorption cross section at 3.39 μm of alkanes, aromatics and substituted hydrocarbons. Chem. Phys. Lett., 531, 22.
  • Perrin, M.Y., and Hartmann, J.M. 1989. High temperature adsorption of the 3.39 µm He-Ne laser line by methane. J. Quant. Spectrosc. Radiat. Transfer, 42(6), 459.
  • Rothman, L.S., et al. 2009. The HITRAN 2008 molecular spectroscopic database. JQSRT, 110, 533.
  • The Steel Construction Institute. 2005. Protection of piping systems subject to fires and explosions. Health & Safety Executive. Technical note, 8.
  • Tomita, E., Kawahara, N., Shigenaga, M., Nishiyama, A., and Dibble, R.W. 2003. In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.39 μm in frared laser absorption: discussions and applicability with a homogeneous methane-air mixture. Meas. Sci. Technol., 14, 1350.
  • Valiev, D., Bychkov, V., Akkerman, V., and Eriksson, L.E. 2009. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration. Phys. Rev., 80, 036317.
  • Valiev, D., Bychkov, V., Akkerman, V., Law, C.K., and Eriksson, L.E. 2010. Flame acceleration in channels with obstacles in the deflagration-to-detonation transition. Combust. Flame, 157, 1012.
  • Velikorodny, A., Studer, E., Kudriakov, S., and Beccantini, A. 2015. Combustion modeling in large scale volumes using EUROPLEXUS code. J. Loss Prev. Process Ind., 35, 104.
  • Yoshiyama, S., Hamamoto, Y., Tomita, E., and Minami, K.I. 1996. Measurement of hydrocarbon fuel concentration by means of infrared absorption technique with 3.39 μm He-Ne laser. JSAE Rev., 17, 339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.