285
Views
3
CrossRef citations to date
0
Altmetric
Articles

A Constitutive Model for the Shock Ignition of Polymer Bonded Explosives

, , , &
Pages 590-604 | Received 21 May 2018, Accepted 24 Jul 2018, Published online: 10 Oct 2018

References

  • Addessio, F.L., and Johnson, J.N. 1990. A constitutive model for the dynamic response of brittle materials. J. Appl. Phys., 67(7), 3275–3286.
  • Ames, R. 2005. Energy release characteristics of impact-initiated energetic materials. Mrs Proc., 896(3), 321–333.
  • Ames, R. 2013. Vented chamber calorimetry for impact-initiated energetic materials. proceedings of the Aiaa Aerospace Sciences Meeting and Exhibit, F, [C].
  • Asay, B.W., Dickson, P.M., Henson, B., Fugard, C., Funk, D.J., and Idar, D.J. 1998. Dynamic measurement of the influence of projectile radius and velocity on strain localization during impact of an energetic material. Eleventh International Detonation Symposium Snowmass, [C].
  • Aydemir, E., Ulas, A., and Serin, N. 2012. Thermal decomposition and ignition of PBXN-110 plastic-bonded explosive. Propell. Explos. Pyrot., 37(3), 308–315.
  • Barua, A., Kim, S., Horie, Y., and Zhou, M. 2013. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold. J. Appl. Phys., 113(6), 064906–064922.
  • Bohannan, A., and Fahrenthold, E. 2008. Hypervelocity impact simulation using membrane particle-elements. Int. J. Impact Eng., 35(12), 1497–1502.
  • Cai, X., Zhang, W., Xie, W., Ni, Y., Li, D., and Sun, Y. 2015. Initiation and energy release characteristics studies on polymer bonded explosive materials under high speed impact. Mater. Des., 68, 18–23.
  • Chidester, S.K., Garza, R., and Tarver, C.M. 1998a. Low Amplitude Impact Testing and Analysis of Pristine and Aged Solid High Explosives, Office of Scientific & Technical Information Technical Reports. Eleventh International Detonation Symposium Snowmass, [C].
  • Chidester, S.K., Tarver, C.M., and Garza, R. 1998b. Low amplitude impact testing and analysis of pristine and aged solid high explosives. proceedings of the Eleventh (International) Symposium on Detonation, ONR, F, [C].
  • Dienes, J.K., and Kershner, J.D. 1983. Multiple-Shock Initiation via Statistical Crack Mechanics, Office of Scientific & Technical Information Technical Reports. Eleventh International Detonation Symposium Snowmass, [C].
  • Dienes, J., Zuo, Q., and Kershner, J. 2006. Impact initiation of explosives and propellants via statistical crack mechanics. J. Mech. Phys. Solids, 54(6), 1237–1275.
  • Dienes, J.K., and Kershner, J.D. 1998. Multiple-Shock Initiation via Statistical Crack Mechanics, Office of Scientific & Technical Information Technical Reports.
  • Gruau, C., Picart, D., Belmas, R., Bouton, E., Delmaire-Sizes, F., Sabatier, J., and Trumel, H. 2009. Ignition of a confined high explosive under low velocity impact. Int. J. Impact Eng., 36(4), 537–550.
  • Hackett, R.M., and Bennett, J.G. 2000. An implicit finite element material model for energetic particulate composite materials. Int. J. Numer Methods Eng., 49(9), 1191–1209.
  • Howe, P.M., Gibbons, G., Jr, and Webber, P.E. 1986. DTIC Document.
  • Ma, D., Chen, P., Zhou, Q., and Dai, K. 2013. Ignition criterion and safety prediction of explosives under low velocity impact. J. Appl. Phys., 114(11), 405–408.
  • Qin, J., Chen, R., Wen, X., Lin, Y., Liang, M., and Lu, F. 2013. Mechanical behaviour of dual-phase high-strength steel under high strain rate tensile loading. Mater. Sci. Eng, A., 586, 62–70.
  • Tan, H., Liu, C., Huang, Y., and Geubelle, P.H. 2005. The cohesive law for the particle/matrix interfaces in high explosives. J. Mech. Phys. Solids, 53(8), 1892–1917.
  • Tarver, C.M. 2005. Ignition and growth modeling of LX-17 hockey puck experiments. PROPELL. EXPLOS. PYROT., 30(2), 109–117.
  • Udaykumar, H.S., Tran, L., Belk, D.M., and Vanden, K.J. 2003. An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces. J. Comput. Phys., 186(1), 136–177.
  • Xiao, Y., Sun, Y., Yang, Z., and Guo, L. 2017a. Dynamic compressive properties of polymer bonded explosives under confining pressure. PROPELL. EXPLOS. PYROT., 42(8), 873–882.
  • Xiao, Y., Sun, Y., Zhen, Y., Guo, L., and Yao, L. 2017b. Characterization, modeling and simulation of the impact damage for polymer bonded explosives. Int. J. Impact Eng., 103, 149–158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.