474
Views
12
CrossRef citations to date
0
Altmetric
Articles

Effects of Inert and Energetic Nanoparticles on Burning Liquid Ethanol Droplets

, , , , &
Pages 1079-1100 | Received 11 May 2018, Accepted 06 Aug 2018, Published online: 21 Aug 2018

References

  • Abu-Eishah, S.I. 2001. Correlations for the thermal conductivity of metals as a function of temperature. Int. J. Thermophys., 22(6), 1855–1868.
  • Allen, C., Mittal, G., Sung, C.J., Toulson, E., and Lee, T. 2011. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proc. Combust. Inst., 33(2), 3367–3374.
  • Basu, S., and Miglani, A. 2016. Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. Int. J. Heat Mass Transf., 96, 482–503.
  • Bello, M.N., Pantoya, M.L., Kappagantula, K., Wang, W.S., Vanapalli, S.A., Irvin, D.J., and Wood, L.M. 2015. Reaction dynamics of rocket propellant with magnesium oxide nanoparticles. Energy and Fuels, 29(9), 6111–6117.
  • Bennewitz, J.W., Badakhshan, A., and Talley, D.G. 2018a. Systematic measurement of hydrocarbon fuel droplet burning rate constants and ignition delays. 2018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, AIAA 2018–0672, 672.
  • Bennewitz, J.W., Valentini, D., Plascencia, M.A., Vargas, A., Sim, H.S., Lopez, B., Smith, O.I., and Karagozian, A.R. 2018b. Periodic partial extinction in acoustically coupled fuel droplet combustion. Combust. Flame, 189, 46–61.
  • Buyco, E.H., and Davis, F.E. 1970. Specific heat of aluminum from zero to its melting temperature and beyond equation for representation of the specific heat of solids. J. Chem. Eng. Data, 15(4), 518–523.
  • De Leo, M., Saveliev, A., Kennedy, L.A., and Zelepouga, S.A. 2007. OH and CH luminescence in opposed flow methane oxy-flames. Combust. Flame, 149(4), 435–447.
  • Gan, Y., Lim, Y.S., and Qiao, L. 2012. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations. Combust. Flame, 159(4), 1732–1740.
  • Gan, Y., and Qiao, L. 2011. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust. Flame, 158(2), 354–368.
  • Ghamari, M., and Ratner, A. 2017. Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles. Fuel, 188, 182–189.
  • Gmehling, J., Rarey, J., and Menke, J. 2008. Dortmund data bank. Oldenbg. Http//www.Ddbst.Com.
  • Godsave, G.A.E. 1953. Studies of the combustion of drops in a fuel spray-the burning of single drops of fuel. Symp. Combust., 4(1), 818–830.
  • Guerieri, P.M., DeLisio, J.B., and Zachariah, M.R. 2017. Nanoaluminum/Nitrocellulose microparticle additive for burn enhancement of liquid fuels. Combust. Flame, 176, 220–228.
  • Hemingway, B.S. 1987. Quartz: heat capacities from 340 to 1000 K and revised values for the thermodynamic properties. Am. Mineral., 72, 273–279.
  • Javed, I., Baek, S.W., and Waheed, K. 2015a. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures. Combust. Flame, 162(1), 191–206.
  • Javed, I., Baek, S.W., and Waheed, K. 2015b. Autoignition and combustion characteristics of kerosene droplets with dilute concentrations of aluminum nanoparticles at elevated temperatures. Combust. Flame, 162(3), 774–787.
  • Kumagai, S., and Isoda, H. 1957. Combustion of fuel droplets in a falling chamber. Symp. Combust., 6(1), 726–731.
  • Law, C.K. 1982. Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci., 8(3), 171–201.
  • Law, C.K., and Williams, F.A. 1972. Kinetics and convection in the combustion of alkane droplets. Combust. Flame, 19(3), 393–405.
  • Li, C.H., and Peterson, G.P. 2006. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys., 99(8), 084314.
  • Linstrom, P.J., and Mallard, W.G. 2011. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, MD, USA.
  • McBride, B., and Gordon, S. 1996. Computer program for calculation of complex chemical equilibrium compositions and applications II. Users manual and program description. NASA Report Number RP-1311-P2.
  • Miglani, A., and Basu, S. 2015a. Coupled mechanisms of precipitation and atomization in burning nanofluid fuel droplets. Sci. Rep., 5, 15008.
  • Miglani, A., and Basu, S. 2015b. Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet. J. Heat Transfer, 137(10), 102001.
  • Miglani, A., Basu, S., and Kumar, R. 2014. Suppression of instabilities in burning droplets using preferential acoustic perturbations. Combust. Flame, 161(12), 3181–3190.
  • Ooi, J.B., Ismail, H.M., Swamy, V., Wang, X., Swain, A.K., and Rajanren, J.R. 2016. Graphite oxide nanoparticle as a diesel fuel additive for cleaner emissions and lower fuel consumption. Energy and Fuels, 30(2), 1341–1353.
  • Pandey, K., Chattopadhyay, K., and Basu, S. 2017. Combustion dynamics of low vapour pressure nanofuel droplets. Phys. Fluids, 29(7), 74102.
  • Pfeil, M.A. 2012. Changes in combustion behavior of liquid fuels due to the addition of small amounts of ammonia borane or nano aluminum. Master Thesis, Purdue University.
  • Plascencia, M. 2018. Combustion of liquid nanofuels and reactive processes in liquid rocket engines. Ph.D. prospectus, UCLA.
  • Sabourin, J.L., Dabbs, D.M., Yetter, R.A., Dryer, F.L., and Aksay, I.A. 2009. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. ACS Nano, 3(12), 3945–3954.
  • Seemann, H.E. 1928. The thermal and electrical conductivity of fused quartz as a function of temperature. Phys. Rev., 31(1), 119–129.
  • Sevilla-Esparza, C.I., Wegener, J.L., Teshome, S., Rodriguez, J.I., Smith, O.I., and Karagozian, A.R. 2014. Droplet combustion in the presence of acoustic excitation. Combust. Flame, 161(6), 1604–1619.
  • Sim, H.S. 2016. Understanding the role of multifunctional nanoengineered particulate additives on supercritical pyrolysis and combustion of hydrocarbon fuels/propellants. PhD dissertation, Pennsylvania State University.
  • Sirignano, W.A. 1983. Fuel droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci., 9(4), 291–322.
  • Song, J., Wang, J., and Boehman, A.L. 2006. The role of fuel-borne catalyst in diesel particulate oxidation behavior. Combust. Flame, 146(1), 73–84.
  • Speight, J.G. 2005. Lange’s Handbook Of Chemistry, 16th ed. McGraw-Hill, New York.
  • Struk, P.M., Ackerman, M., Nayagam, V., and Dietrich, D.L. 1998. On calculating burning rates during fiber supported droplet combustion. Microgravity Sci. Technol, XI, 144–151.
  • Sundaram, D., Yang, V., and Yetter, R.A. 2017. Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog. Energy Combust. Sci., 157(3), 421–435.
  • Tanvir, S., Jain, S., and Qiao, L. 2015. Latent heat of vaporization of nanofluids: measurements and molecular dynamics simulations. J. Appl. Phys., 118(1), 014902.
  • Tanvir, S., and Qiao, L. 2014. Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels. J. Propuls. Power, 31(1), 408–415.
  • Tanvir, S., and Qiao, L. 2016. Droplet burning rate enhancement of ethanol with the addition of graphite nanoparticles: influence of radiation absorption. Combust. Flame, 166, 34–44.
  • Tyagi, H., Phelan, P.E., Prasher, R., Peck, R., Lee, T., Pacheco, J.R., and Arentzen, P. 2008. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett., 8(5), 1410–1416.
  • Valentine, J.M., Peter-Hoblyn, J.D., and Acres, G.K. 2000. Emissions reduction and improved fuel economy performance from a bimetallic platinum/cerium diesel fuel additive at ultra-low dose rates (No. 2000-01-1934). SAE Technical Paper.
  • Van Devener, B., and Anderson, S.L. 2006. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy and Fuels, 20(5), 1886–1894.
  • Wickham, D.T., Cook, R., De Voss, S., Engel, J.R., and Nabity, J. 2006. Soluble nano-catalysts for high performance fuels. J. Russ. Laser Res., 27(6), 552–561.
  • Williams, A. 1973. Combustion of droplets of liquid fuels: A review. Combust. Flame, 21(1), 1–31.
  • Yetter, R.A., Risha, G.A., and Son, S.F. 2009. Metal particle combustion and nanotechnology. Proc. Combust. Inst., 32(2), 1819–1838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.