136
Views
2
CrossRef citations to date
0
Altmetric
Articles

Critical Condition for the Combustion Rate of a Carbon Particle to be Activated: Theory and Experimental Comparisons

ORCID Icon
Pages 607-628 | Received 13 Apr 2018, Accepted 09 Aug 2018, Published online: 10 Sep 2018

References

  • Annamalai, K., and Puri, I.K. 2007. Combustion Science and Engineering, CRC, Baco Raton, pp. 608–620.
  • Annamalai, K., and Ryan, W. 1993. Interactive processes in gasification and combustion - II. Isolated carbon, coal and porous char particles. Prog. Energy Combust. Sci., 19(5), 383–446.
  • Annamalai, K., Ryan, W., and Dhanapalan, S. 1994. Interactive processes in gasification and combustion - Part III: Coal/char particle arrays, streams and clouds. Prog. Energy Combust. Sci., 20(6), 487–618.
  • Arthur, J.R. 1951. Reactions between carbon and oxygen. Trans. Faraday Soc., 47, 164–178.
  • Bandyopadhyay, S., and Bhaduri, D. 1972. Prediction of ignition temperature of a single coal particle. Combust. Flame, 18, 411–415.
  • Batchelder, H.R., Busche, R.M., and Armstrong, W.P. 1953. Kinetics of coal gasification. Ind. Eng. Chem., 45(9), 1856–1878.
  • Bejarano, P.A., and Levendis, Y.A. 2008. Single-coal-particle combustion in O2/N2 and O2/CO2 environments. Combust. Flame, 153, 270–287.
  • Caram, H.S., and Amundson, N.R. 1977. Diffusion and reaction in a stagnant boundary layer about a carbon particle. Ind. Eng. Chem., Fundam., 16(2), 171–181.
  • Cassel, H.M., Liebman, I., and Mock, W.K. 1956. Radiative transfer in dust flames. Sixth Symp. (Int.) on Combust., The Combust. Inst., 6, 602–605.
  • Clark, T.J., Woodley, R.E., and De Halas, D.R. 1962. Gas-graphite systems. In Nightingale, R.E. (Ed.), Nuclear Graphite, Academic, New York, pp. 387–444.
  • Essenhigh, R.H. 1976. Combustion and flame propagation in coal systems: A review. Sixteenth Symp.(Int.) on Combust., The Combust. Inst., 353–374.
  • Essenhigh, R.H. 1981. Fundamentals of coal combustion. In Elliott, M.A. (Ed.), Chemistry of Coal Utilization, Wiley-Interscience, New York, pp. 1153–1312.
  • Essenhigh, R.H., and Thring, M.W. 1958. Measurement of burning times of single coal particles, Paper 29, Proc. Residential Conf. on Science in the Use of Coal, Sheffield.
  • Fenimore, C.P., and Jones, G.W. 1967. Oxidation of soot by hydroxyl radicals. J. Phys. Chem., 71, 593–597.
  • Field, M.A. 1969. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200°K and 2000 °K. Combust. Flame, 13, 237–252.
  • Field, M.A. 1970. Measurements of the effect of rank on combustion rates of pulverized coal. Combust. Flame, 14, 237–248.
  • Frank-Kamenetsukii, D.A. 1969. Diffusion and Heat Transfer in Chemical Kinetics, 2nd Ed., Plenum, New York, pp. 349–357.
  • Gerstein, M., and Coffin, K.P. 1956. Combustion of solid fuels. In Lewis, B., Pease, R.N., and Taylor, H.S. (Eds.), Combustion Processes, Princeton UP, Princeton, pp. 444–469.
  • Glassman, I. 1996a. Thermal spontaneous ignition. In Combustion, 3rd Ed., Academic, San Diego, pp. 330–340.
  • Glassman, I. 1996b. The burning of carbon char particles. In Combustion, 3rd Ed., Academic, San Diego, pp. 462–466.
  • Glassman, I. 1996c. Refinements of the mass burning rate expression. In Combustion, 3rd Ed., Academic, San Diego, pp. 308–312.
  • Goetz, G.J., Nsakala, N.Y., Patel, R.L., and Lao, T.C. 1982. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. (Final Report, Sept. 1982). EPRI-AP-2601, Electric Power Research Institute, Palo Alto, CA.
  • Hamor, R.J., Smith, I.W., and Tyler, R.J. 1973. Kinetics of combustion of a pulverized brown coal char between 630 and 2200 K. Combust. Flame, 21, 153–162.
  • Ivanova, I.P., and Babii, V.L. 1966. A study of the burn-out mechanism of coal particles. Thermal Eng., 13(4), 70–76.
  • Katsnel’son, B.D., and Marone, I.Ya. 1964. Effects of pressure and oxygen concentration on the ignition and combustion of pulverized coal particles. Teploenergetika, 11, 11–15. (in Russian).
  • Khitrin, L.N. 1962. The Physics of Combustion and Explosion, Israel Program for Scientific Translations, Jerusalem, pp. 353–437.
  • Lee, K.B., Thring, M.W., and Beér, J.M. 1962. On the rate of combustion of soot in a laminar soot flame. Combust. Flame, 6, 137–145.
  • Lester, T.W., Seeker, W.R., and Merklin, J.F. 1981. The influence of oxygen and total pressure on the surface oxidation rate of bituminous coal. Eighteenth Symp.(Int.) on Combust., The Combust. Inst., 1257–1265.
  • Libby, P.A., and Blake, T.R. 1979. Theoretical study of burning carbon particles. Combust. Flame, 36(1), 139–169.
  • Libby, P.A., and Blake, T.R. 1981. Burning carbon particles in the presence of water vapor. Combust. Flame, 41(1), 123–147.
  • Luman, J.R., Wehrman, B., Kuo, K.K., Yetter, R.A., Masoud, N.M., Manning, T.G., Harris, L.E., and Bruck, H.A. 2007. Development and characterization of high performance solid propellants containing nano-sized energetic ingredients. Proc. Combust. Inst., 31, 2089–2096.
  • Maahs, H.G. 1971. Oxidation of carbon at high temperatures: reaction-rate control or transport control, NASA TN D-6310.
  • Makino, A. 1992. An approximate explicit expression for the combustion rate of a small carbon particle. Combust. Flame, 90(2), 143–154.
  • Makino, A. 2011a. Mass transfer related to heterogeneous combustion of solid carbon in the forward stagnation region - part 1 - combustion rate and flame structure. In Markoš, J. (Ed.), Mass Transfer in Chemical Engineering Processes, InTech, pp. 251–282. <http://www.intechopen.com/articles/show/title/mass-transfer-related-to-heterogeneous-combustion-of-solid-carbon-in-the-forward-stagnation-region-1>.
  • Makino, A. 2011b. Mass transfer related to heterogeneous combustion of solid carbon in the forward stagnation region - part 2 - combustion rate in special environments. In Markoš, J. (Ed.), Mass Transfer in Chemical Engineering Processes, InTech, pp. 283–306. <http://www.intechopen.com/articles/show/title/mass-transfer-related-to-heterogeneous-combustion-of-solid-carbon-in-the-forward-stagnation-region-2>.
  • Makino, A. 2013. Critical size for the particle burn-out of solid carbon and/or boron as the high-energy-density fuel. Combust. Flame, 160, 742–744.
  • Makino, A. 2014. An attempt for applying formulation of the carbon combustion in the stagnation flowfield to some experimental comparisons related to the boundary layer combustion. Combust. Flame, 161(6), 1537–1546.
  • Makino, A. 2017. Critical condition for the particle combustion of carbon, activated in a hot, quiescent environment; comparisons with experimental results. Combust. Sci. Technol., 189, 991–1012.
  • Makino, A., Araki, N., and Mihara, Y. 1994. Combustion of artificial graphite in stagnation flow: estimation of global kinetic parameters from experimental results. Combust. Flame, 96(3), 261–274.
  • Makino, A., Hojo, M., and Shintomi, M. 2013. Combustion rate of solid carbon in the axisymmetric stagnation flow field established over a sphere and/or a flat plate. J. Combust, 2013. Article ID 790672. An open access publication at http://www.hindawi.com/journals/jc/
  • Makino, A., and Law, C.K. 2009. An analysis of the transient combustion and burnout time of carbon particles. Proc. Combust. Inst., 32(2), 2067–2074.
  • Makino, A., Nishikawa, K., and Araki, N. 1997. Effects of oxygen concentration and initial particle size on the combustion behavior of carbon particle(s). Trans. Jpn. Soc. Mech. Eng. (Series B), 63, 1049–1054. [in Japanese].
  • Makino, A., and Shintomi, M. 2015. Critical condition related to the activation of solid fuel particles; comparisons with experimental results for char combustion in a quiescent environment. Combust. Flame, 162, 3156–3165.
  • Mitchell, R.E., and McLean, W.J. 1982. On the temperature and reaction rate of burning pulverized fuels. Nineteenth Symp.(Int.) on Combust., The Combust. Inst., 1113–1122.
  • Mon, E., and Amundson, N.R. 1978. Diffusion and reaction in a stagnant boundary layer about a carbon particle. 2. An extension. Ind. Eng. Chem., Fundam., 17(4), 313–321.
  • Mulcahy, M.F., and Smith, I.W. 1969. Kinetics of combustion of pulverized fuel: A review of theory and experiment. Rev. Pure and Appl. Chem., 19(1), 81–108.
  • Park, C., and Appleton, J.P. 1973. Shock-tube measurements of soot oxidation rates. Combust. Flame, 20, 369–379.
  • Rosner, D.E. 1972. High-temperature gas-solid reactions. Annu. Rev. Mater. Sci., 2, 573–606.
  • Smith, D.F., and Gudmundsen, A. 1931. Mechanism of combustion of individual particles of solid fuels. Ind. Eng. Chem., 23, 277–285.
  • Smith, I.W. 1971a. Kinetics of combustion of size-graded pulverized fuels in the temperature range 1200-2270 °K. Combust. Flame, 17, 303–314.
  • Smith, I.W. 1971b. The kinetics of combustion of pulverized semi-anthracite in the temperature range 1400-2200 °K. Combust. Flame, 17, 421–428.
  • Smith, I.W. 1982. The combustion rates of coal char: A review. Nineteenth Symp. (Int.) on Combust., The Combust. Inst., 1045–1065.
  • Smith, I.W., and Tyler, R.J. 1974. The reactivity of a porous brown coal char to oxygen between 630 and 1812°K. Combust Sci. Technol., 9(1), 87–94.
  • Tret’yakov, V.M. 1962. (Cited by Khitrin, L. N. 1962. The Physics of Combustion and Explosion, Israel Program for Scientific Translations, Jerusalem, pp. 353–437.
  • Tu, C.M., Davis, H., and Hottel, H.C. 1934. Combustion Rate of Carbon. Combustion of spheres in flowing gas streams. Ind. Eng. Chem., 26(7), 749–757.
  • Ubhayakar, S.K., and Williams, F.A. 1976. Burning and extinction of a laser-ignited carbon particle in quiescent mixtures of oxygen and nitrogen. J. Electrochem. Soc., 123(5), 747–756.
  • Walker, P.L., Jr., Rusinko, F., Jr., and Austin, L.G. 1959. Gas reaction of carbon. In Eley, D.D., Selwood, P.W., and Weisz, P.B. (Eds.), Advances in Catalysis and Related Subjects, Vol. 11, Academic, New York. pp. 133–221.
  • Wells, W.F., Kramer, S.K., Smoot, L.D., and Blackham, A.U. 1984. Reactivity and combustion of coal chars. Twentieth Symp.(Int.) on Combust., The Combust. Inst., 1539–1546.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.