293
Views
7
CrossRef citations to date
0
Altmetric
Articles

Autoignition of DME/C2H6 Mixtures Under High-Pressure and Low-Temperature Conditions

, ORCID Icon, , , &
Pages 1201-1218 | Received 13 Jun 2018, Accepted 27 Aug 2018, Published online: 25 Sep 2018

References

  • Arcoumanis, C., Bae, C., Crookes, R., and Kinoshita, E. 2008. The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel, 87, 1014−1030.
  • Aul, C.J., Metcalfe, W.K., Burke, S.M., Curran, H.J., and Petersen, E.L. 2013. Ignition and kinetic modeling of methane and ethane fuel blends with oxygen: A design of experiments approach. Combust. Flame, 160, 1153–1167.
  • Beerer, D.J., and Mcdonell, V.G. 2011. An experimental and kinetic study of alkane autoignition at high pressures and intermediate temperatures. Proc. Combust. Inst., 33, 301−307.
  • Bugler, J., Marks, B., Mathieu, O., Archuleta, R., Camou, A., Grégoire, C., Heufer, K.A., Petersen, E.L., and Curran, H.J. 2016. An ignition delay time and chemical kinetic modeling study of the pentane isomers. Combust. Flame, 163, 138–156.
  • Burcat, A., Skinner, G.B., Scheller, K., and Crossley, R.W. 1972. Shock tube investigation of ignition in ethane-oxygen-argon mixtures. Combust. Flame, 18, 115–123.
  • Burke, U., Metcalfe, W.K., Burke, S.M., Heufer, K.A., Dagaut, P., and Curran, H.J. 2016. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combust. Flame, 165, 125–136.
  • Burke, U., Somers, K.P., O’Toole, P., Zinner, C.M., Marquet, N., Bourque, G., Petersen, E.L., Metcalfe, W.K., Serinyel, Z., and Curran, H.J. 2015. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combust. Flame, 162, 315−330.
  • Cook, R.D., Davidson, D.F., and Hanson, R.K. 2009. Shock tube measurements of ignition delay times and OH time-histories in dimethyl ether oxidation. Proc. Combust. Inst., 32, 189–196.
  • Curran, H.J., Fischer, S.L., and Dryer, F.L. 2000. The reaction kinetics of dimethyl ether. II: low-temperature oxidation in flow reactors. Int J Chem Kinet, 32, 741–759.
  • Dagaut, P., Cathonnet, M., and Boettner, J.-C. 1991. Kinetics of ethane oxidation. Int. J. Chem. Kinet., 23, 437–455.
  • Dagaut, P., Daly, C., Simmie, J.M., and Cathonnet, M. 1998. The oxidation and ignition of dimethylether from low to high temperature (500-1600K): experiments and kinetic modeling. Symp. (Int.) Combust., 27, 361–369.
  • Dames, E.E., Rosen, A.S., Weber, B.W., Gao, C.W., Sung, C.-J., and Green, W.H. 2016. A detailed combined experimental and theoretical study on dimethyl ether/propane blended oxidation. Combust. Flame, 168, 310–330.
  • Di, H.S., He, X., Zhang, P., Wang, Z., Wooldridge, M.S., Law, C.K., Wang, C.P., Shuai, S.J., and Wang, J.X. 2014. Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane. Combust. Flame, 161, 2531–2538.
  • Gersen, S., Mokhov, A.V., Darmeveil, J.H., Levinsky, H.B., and Glarborg, P. 2011. Ignition-promoting effect of NO2 on methane, ethane and methane/ethane mixtures in a rapid compression machine. Proc. Combust. Inst., 33, 433–440.
  • Hashemi, H., Jacobsen, J.G., Rasmussen, C.T., Christensen, J.M., Glarborg, P., Gersen, S., Essen, M.V., Levinsky, H.B., and Klippenstein, S.J. 2017. High-pressure oxidation of ethane. Combust. Flame, 182, 150–166.
  • Healy, D., Curran, H.J., Simmie, J.M., Kalitan, D.M., Zinner, C.M., Barrett, A.B., Petersen, E.L., and Bourque, G. 2008. Methane/ethane/propane mixture oxidation at high pressures and at high, intermediate and low temperatures. Combust. Flame, 155, 441–448.
  • Healy, D., Kalitan, D.M., Aul, C.J., Petersen, E.L., Bourque, G., and Curran, H.J. 2010. Oxidation of C1−C5 alkane quinternary natural gas mixtures at high pressures. Energy Fuels, 24, 1521−1528.
  • Hu, E.J., Chen, Y.Z., Zhang, Z.H., Li, X.T., Cheng, Y., and Huang, Z.H. 2015. Experimental study on ethane ignition delay times and evaluation of chemical kinetic models. Energy Fuels, 29, 4557–4566.
  • Hu, E.J., Jiang, X., Huang, Z.H., Zhang, J.X., Zhang, Z.H., and Man, X.J. 2013a. Experimental and kinetic studies on ignition delay times of dimethyl ether/n-butane/O2/Ar mixtures. Energy Fuels, 27, 530–536.
  • Hu, E.J., Zhang, Z.H., Pan, L., Zhang, J.X., and Huang, Z.H. 2013b. Experimental and modeling study on ignition delay times of dimethyl ether/propane/oxygen/argon mixtures at 20 bar. Energy Fuels, 27, 4007−4013.
  • Huang, J., and Bushe, W. 2006. Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions. Combust. Flame, 144, 74–88.
  • Jiang, X., Tian, Z.M., Zhang, Y.J., and Huang, Z.H. 2017. Shock tube measurement and simulation of DME/n-butane/air mixtures: effect of blending in the NTC region. Fuel, 203, 316–329.
  • Jung, D., Kwon, O., and Lim, O.T. 2011. Comparison of DME HCCI operating ranges for the thermal stratification and fuel stratification based on a multi-zone model. J. Mech. Sci. Technol., 25, 1383−1390.
  • Kong, S. 2007. A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics. Fuel, 86, 1483−1489.
  • Lee, S., Oh, S., Choi, Y., and Kang, K. 2011. Effect of n-butane and propane on performance and emission characteristics of an SI engine operated with DME-blended LPG fuel. Fuel, 90, 1674−1680.
  • Li, Y., Zhou, C.W., Somers, K.P., Zhang, K.W., and Curran, H.J. 2017. The oxidation of 2-butene: a high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst., 36, 403–411.
  • Li, Z.H., Wang, W.J., Huang, Z., and Oehlschlaeger, M.A. 2013. Dimethyl ether autoignition at engine-relevant conditions. Energy Fuels, 27, 2811–2817.
  • Liu, H., Zhang, H.G., Shi, Z.C., Lu, H.T., Zhao, G.Y., and Yao, B.F. 2014. Performance characterization and auto-ignition performance of a rapid compression machine. Energies, 7, 6083–6104.
  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J. 2013. A hierarchical and comparative kinetic modeling study of C1-C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 45, 638–675.
  • Mittal, G., Chaos, M., Sung, C.-J., and Dryer, F.L. 2008. Dimethyl ether autoignition in a rapid compression machine: experiments and chemical kinetic modeling. Fuel Process. Technol., 89, 1244–1254.
  • Morley, C. 2004. GasEq, Version0.76. http://www.gaseq.co.uk.
  • Oehlschlaeger, M.A., Davidson, D.F., and Hanson, R.K. 2005. High-temperature ethane and propane decomposition. Proc. Combust. Inst., 30, 1119–1127.
  • Oh, C., Jang, J., and Bae, C. 2010. The Effect of LPG Composition on Combustion and Performance in a DME-LPG Dual-Fuel HCCI Engine. SAE Technical Paper.
  • Pan, L., Hu, E.J., Tian, Z.M., Yang, F.Y., and Huang, Z.H. 2015. Experimental and kinetic study on ignition delay times of dimethyl ether at high temperatures. Energy Fuels, 29, 3495–3506.
  • Pan, L., Zhang, Y.J., Zhang, J.X., Tian, Z.M., and Huang, Z.H. 2014. Shock tube and kinetic study of C2H6/H2/O2/Ar mixtures at elevated pressures. In. J. Hydrogen Energy, 39, 6024–6033.
  • Park, S.H., Kim, H.J., and Lee, C.S. 2010. Macroscopic spray characteristics and breakup performance of dimethyl ether (DME) fuel at high fuel temperatures and ambient conditions. Fuel, 89, 3001−3011.
  • Pfahl, U., Fieweger, K., and Adomeit, G. 1996. Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions. Proc. Combust. Inst., 26, 781–789.
  • Ramalingam, A., Zhang, K.W., Dhongde, A., Virnich, L., Sankhla, H., Curran, H.J., and Heufer, A. 2017. An RCM experimental and modeling study on CH4 and CH4/C2H6 oxidation at pressures up to 160 bar. Fuel, 206, 325–333.
  • Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., and Law, C.K. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci., 38, 468–501.
  • Sheng, C.Y., Bozzelli, J.W., Dean, A.M., and Chang, A.Y. 2002. Detailed kinetics and thermo-chemistry of C2H5+O2: reaction kinetics of the chemically-activated and stabilized CH3CH2OO adduct. J. Phys. Chem. A, 106, 7276–7293.
  • Shi, Z.C., Zhang, H.G., Liu, H., Lu, H.T., Li, J.Z., and Gao, X. 2015. Effects of buffer gas composition on autoignition of dimethyl ether. Energies, 8, 10198–10218.
  • Shi, Z.C., Zhang, H.G., Lu, H.T., Liu, H., Ys, A., and Meng, F.X. 2017. Autoignition of DME/H2 mixtures in a rapid compression machine under low-to-medium temperature ranges. Fuel, 194, 50–62.
  • Tanaka, H., Kobayashi, K., Sako, T., Sakai, Y., Furutani, M., and Kuwahara, K. 2015. Ignition Characteristics of Ethane and Its Roles in Natural Gas for HCCI Engine Operation, SAE Technical Paper, USA.
  • Tanaka, S., Ayala, F., Keck, J.C., and Heywood, J.B. 2003. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combust. Flame, 132, 219–239.
  • Tang, C.L., Wei, L.J., Zhang, J.X., Man, X.J., and Huang, Z.H. 2012. Shock tube measurements and kinetic investigation on the ignition delay times of methane/dimethyl ether mixtures. Energy Fuels, 26, 6720–6728.
  • Tranter, R.S., Amoorthy, H.R., Raman, A., Brezinsky, K., and Allendorf, M.D. 2002. High-pressure single-pulse shock tube investigation of rich and stoichiometric ethane oxidation. Proc. Combust. Inst., 29, 1267–1275.
  • Villano, S.M., Huynh, L.K., Carstensen, H.H., and Dean, A.M. 2011. High-pressure rate rules for alkyl+O2 reactions.1. The dissociation, concerted elimination, and isomerization channels of the alkyl peroxy radical. J. Phys. Chem. A, 115, 13425–13442.
  • Vries, J.D., Hall, J.M., Simmons, S.L., Rickard, M.J.A., Kalitan, D.M., and Petersen, E.L. 2007. Ethane ignition and oxidation behind reflected shock waves. Combust. Flame, 150, 137–150.
  • Westbrook, C.K. 2000. Chemical kinetics of hydrocarbon ignition in practical combustion systems. Proc. Combust. Inst., 28, 1563–1757.
  • Youn, I.M., Park, S.H., Roh, H.G., and Lee, C.S. 2011. Investigation on the fuel spray and emission reduction characteristics for dimethyl ether (DME) fueled multi-cylinder diesel engine with common-rail injection system. Fuel Process. Technol., 92, 1280−1287.
  • Zhang, J.X., Hu, E.J., Pan, L., Zhang, Z.H., and Huang, Z.H. 2013a. Shock-tube measurements of ignition delay times for the ethane/dimethyl ether blends. Energy Fuels, 27, 6247–6254.
  • Zhang, J.X., Hu, E.J., Zhang, Z.H., Pan, L., and Huang, Z.H. 2013b. Comparative study on ignition delay times of C1−C4 alkanes. Energy Fuels, 27, 3480−3487.
  • Zhou, C.W., Li, Y., O’Connor, E., Somers, K.P., Thion, S., Keesee, C., Mathieu, O., Petersen, E.L., DeVerter, T.A., Oehlschlaeger, M.A., Kukkadapu, G., Sung, C.-J., Alrefae, M., Khaled, F., Farooq, A., Dirrenberger, P., Glaude, P.-A., Battin-Leclerc, F., and Curran, H.J. 2016. A comprehensive experimental and modeling study of isobutene oxidation. Combust. Flame, 167, 353–379.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.