188
Views
5
CrossRef citations to date
0
Altmetric
Articles

Diffusion Combustion of a Hydrogen Microjet at Variations of its Velocity Profile and Orientation of the Nozzle in the Field of Gravitation

, , , &
Pages 1219-1235 | Received 19 Jan 2018, Accepted 28 Aug 2018, Published online: 10 Sep 2018

References

  • Abid, M. 1993. Simulation numeriques directes de la dynamique de transition tridimensionnelle des jets axisymetriques. Ph.D. thesis., Ecole Normale Superieure de Paris.
  • Ajay, K.A., Albers, B.W., and Alammar, K.N. 2005. Effects of buoyancy on transitional hydrogen gas - jet diffusion flames. Combustion Sci. Technol., 177(2), 305–322.
  • Bernal, L.P., and Roshko, A. 1986. Streamwise vortex structure in plane mixing layers. J. Fluid Mech., 170, 499–525.
  • Brancher, P., Chomaz, J.M., and Huerre, P. 1994. Direct numerical simulation of round jets: vortex induction and side jets. Phys. Fluids., 6, 1768–1774.
  • Crow, S.C., and Champagne, F.H. 1971. Orderly structure in jet turbulence. J. Fluid Mech., 48, 547–591.
  • Grek, G.R., Katasonov, M.M., Kozlov, G.V., and Litvinenko, M.V. 2015. Hydrogen diffusion combustion (round skewed nozzle). Bull NSU Phys., 10(2), 42–51 (in Russian).
  • Grek, G.R., Katasonov, M.M., Kozlov, V.V., Korobeyinichev, O.P., Litvinenko, Y.A., and Shmakov, A.G. 2013. Features of the propane combustion in the round and plane mini and microjet in a transverse acoustic field at low Reynolds number. Bull NSU Phys., 8(3), 98–119 (in Russian).
  • Grek, G.R., Kozlov, V.V., and Litvinenko, Y. 2012. Stability of Subsonic Jet Flows. Tutorial, Novosibirsk State University, Novosibirsk, pp. 1–208. CD-Video Presentation. (in Russian).
  • Jeongseog, O., Heo, P., and Yoon, Y. 2009. Acoustic excitation effect on Nox reduction and flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air. Int. J. Hydrogen Energy, 34, 7851–7861.
  • Kim, M., Choi, Y., Jeongseog, O., and Yoon, Y. 2009. Flame–vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing. Combust. Flame, 156, 2252–2263.
  • Kozlov, G.V., Grek, G.R., Sorokin, A.M., and Litvinenko, Y.A. 2008b. Influence of initial conditions at the nozzle exit on the structure of a plane jet. Bull NSU Phys., 3(3), 14–33 (in Russian).
  • Kozlov, V.V., Grek, G.R., Katasonov, M.M., Korobeinichev, O.P., YuA, L., and Shmakov, A.G. 2014b. Flame structure at the round and plane microjet propane combustion in a transverse acoustic field at small Reynolds number. Dokl. Phys., 459(5), 562–566.
  • Kozlov, V.V., Grek, G.R., Katasonov, M.M., Korobeinichev, O.P., Yury, A., Litvinenko, Y.A., and Shmakov, A.G. 2013. Stability of subsonic microjet flows and combustion. J. Flow Control, Meas. Visualization, 3(1), 108–111.
  • Kozlov, V.V., Grek, G.R., Korobeyinichev, O.P., Litvinenko, Y., and Shmakov, A.G. 2014a. The features of hydrogen combustion in round and plane microjet in the transverse acoustic field, and comparison with the results propane combustion. Bull NSU Phys., 9(1), 79–86 (in Russian).
  • Kozlov, V.V., Grek, G.R., and Litvinenko, Y.A. 2015. Visualization of Conventional and Combusting Subsonic Jet Instabilities, Springer-book, Dordrecht, pp. 1–127. with additional material online – 172 P. (ISBN: 978-3-319-26957-3, Book doi:10.1007/978-3-319-26958-0
  • Kozlov, V.V., Grek, G.R., Sorokin, А.М., and Litvinenko, Y. 2008a. Influence of initial conditions at the nozzle exit on a structure and development characteristics of a round jet. Thermophys. Aeromech., 15(1), 55–68.
  • Krivokorytov, M.S., Golub, V.V., and Volodin, V.V. 2012. The effect of acoustic oscillations on diffusion combustion of methane. Tech. Phys. Lett., 38(5), 478–480.
  • Lasheras, J.C., Cho, J.S., and Maxworthy, T. 1986. On the origin and evolution of streamwise vortical structures in plane free shear layer. J. Fluid Mech., 172, 231–258.
  • Liepmann, D., and Gharib, M. 1992. The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech., 245, 643–668.
  • Litvinenko, Y.A., Grek, G.R., Kozlov, V.V., Korobeyinichev, O.P., and Shmakov, A.G. 2015. Structure of the attached flame during diffusion hydrogen microjet combustion (slotted nozzle). Bull NSU Phys., 10(2), 52–66 (in Russian).
  • Litvinenko, Y.A., Grek, G.R., Kozlov, V.V., and Kozlov, G.V. 2011. Subsonic round and plane macrojets and microjets in a transverse acoustic field. Doklady Physics., 56(1), 26–31.
  • Metcalfe, R.W., Orszay, S.A., Brachet, M.E., Menon, S., and Riley, J.J. 1987. Secondary instability of a temporally growing mixing layer. J. Fluid Mech., 184, 207–243.
  • Monkewitz, P.A., Lehmann, B., Barsikow, B., and Bechert, D.W. 1989. The spreading of self-excited hot jets by side jets. Phys. Fluids., A 1, 446–448.
  • Monkewitz, P.A., and Pfizenmaier, E. 1991. Mixing by side jets in strongly forced and self-excited round jets. Phys. Fluids., A 3, 1356–1361.
  • Shmakov, A.G., Grek, G.R., Kozlov, V.V., Korobeinuchev, O.P., and Litvinenko, Y.A. 2015. Various conditions of diffusion combustion of a round hydrogen microjet in air. Bull NSU Phys., 10(2), 27–41 (in Russian).
  • Shmakov, A.G., Grek, G.R., Kozlov, V.V., and Litvinenko, Y.A. 2017. Influence of initial and boundary conditions at the nozzle exit upon diffusion combustion of a hydrogen microjet. Int. J. Hydrogen Energy, 42(24), 15913–15924.
  • Suzuki, M., Atarashi, T., and Masuda, W. 2007. Behavior and structure of internal fuel-jet in diffusion flame under transverse acoustic excitation. Combustion Science and Technology, 179 (12), 2581-2597. doi:http://dx.doi.org/10.1080/00102200701487012
  • Suzuki, M., Ikura, S., and Masuda, W. 2011. Comparison between acoustically-excited diffusion flames of tube and slit burners. Proc. of the 11th Asian Symposium on Visualization. Niigata. Japan. pp. 1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.