280
Views
12
CrossRef citations to date
0
Altmetric
Articles

Characterization of the Products of Explosions of Varying Concentrations of Coal Dust

, , , &
Pages 1236-1255 | Received 14 May 2018, Accepted 02 Sep 2018, Published online: 27 Sep 2018

References

  • Barrett, E.P., Joyner, L.G., and Halenda, P.P. 1951. The determination of pore volume and area distribution in porous substances. Ⅰ. Computations from nitrogen isotherms. J. Am. Chem. Soc., 73(1), 373–380. doi:10.1021/ja01145a126
  • Cao, W., Qin, Q., Cao, W., Lan, Y., Chen, T., Xu, S., and Cao, X. 2017. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-l spherical vessel. Powder Technol., 310, 17–23. doi:10.1016/j.powtec.2017.01.019
  • Cao, W.G., Xu, S., Liang, J.Y., Gao, W., et al. 2014. Characteristics of flame propagation during coal dust cloud explosion. Explos. Shock Waves, 34(5), 286–593.
  • Chen, D.L., Sun, J.H., Wang, Q.S., and Liu, Y. 2008. Combustion behaviors and flame structure of methane/coal dust hybrid in a vertical rectangle chamber. Combust. Sci. Technol., 180(8), 1518–1528. doi:10.1080/00102200802125651
  • Cui, Y.P., Qin, L.L., Du, J., et al. 2007. Products distribution and its influencing factors for coal pyrolysis. Coal Chem. Ind., 35(2), 10–15.
  • Deng, Y.B., Ma, X.W., and Ge, S.W. 2012. Experimental study on pore structure and distribution characteristics of long flame coal. J. Dalian Maritime Univ., 38(2):121–124.
  • Eades, R., Perry, K., Johnson, C., and Miller, J. 2018. Evaluation of the 20L dust explosibility testing chamber and comparison to a modified 38L vessel for underground coal. Int. J. Mining Sci. Technol. doi:10.1016/j.ijmst.2018.05.016
  • Feng, Y.A., Hu, S.Q., Hu, L.S., and Sun, J.B. 2012. Coal dust/methane mixture explosion experiment based on 20L spherical explosive device. J. Saf. Sci. Technol., 8(7):16–19.
  • Horváth, G., and Kawazoe, K. 1983. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn., 16(6), 470–475. doi:10.1252/jcej.16.470
  • Cashdollar, K.L., Weiss, E.S., Montgomery, T.G., and Going, J.E. 2007. Post-explosion observations of experimental mine and laboratory coal dust explosions. J. Loss Prev. Ind., 20(4–6), 607–615. doi:10.1016/j.jlp.2007.04.013
  • Kolesnichenko, I.E., Artemyev, V.B., Kolesnichenko, E.A., Cherechukin, V.G., and Lubomischenko, E.I. 2016. The study of volatile matter yield effect on the coal dust explosion hazard. Ugol (2), 50–55. doi:10.18796/0041-5790
  • Kundu, S.K., Zanganeh, J., Eschebach, D., and Moghtaderi, B. 2017. Explosion severity of methane–coal dust hybrid mixtures in a ducted spherical vessel. Powder Technol., 323:95–102.
  • Lai, C.F., Duan, Z.H., Zhang, Y.F., and Zhang, L.L. 2010. Explosion mechanism of carbon powder. Explosion Shock Waves, 30(3):325–328.
  • Li, Q., Yuan, C., Tao, Q., Zheng, Y., and Zhao, Y. 2018. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors. Fuel, 215, 417–428. doi:10.1016/j.fuel.2017.11.093
  • Li, Q.Z., Zhai, C., Wu, H.J., Lin, B.Q., and Zhu, C.J. 2011. Investigation on coal dust explosion characteristics using 20L explosion sphere vessels. J. China Coal Soc., 36(1):119–124.
  • Li, R.Z. 2010. Numerical simulation of coal dust explosion induced by gas explosion. Explosion Shock Waves, 30(5):529–534.
  • Li, Z.M., Wang, Q., Shen, B.J., Ma, Z.L., and Pan, Y.H. 2017. Model of hydrocarbon gases generation from typical brown coal with transitional organic matter type of Ⅱ2-Ⅲ. J. China Univ. Mining Technol., 46(2):328–335.
  • Liu, Z., Li, X., Qian, J., Lin, S., and Zhang, S. 2017. A study of the characteristics of gaseous and solid residues after coal dust explosions. Combust. Sci. Technol. 189(6):1639-1658.
  • Liu, Z.T., Zhang, S.S., Li, Z.H., et al. 2015. Investigations on coal dust explosion resiudes using 20L explosion sphere vessels. J. China Univ. Mining Technol., 44(5), 823–828.
  • Man, C.K., and Harris, M.L. 2014. Participation of large particles in coal dust explosions. J. Loss Prev. Ind., 27(1), 49–54. doi:10.1016/j.jlp.2013.11.004
  • Mittal, M. 2013. Limiting oxygen concentration for coal dusts for explosion hazard analysis and safety. J. Loss Prev. Ind., 26(6), 1106–1112. doi:10.1016/j.jlp.2013.04.012
  • Niu, F., Liu, Q.M., Bai, C.H., He, X.Q., and Gong, G.D. 2012. Flame propagation and combustion in methane-coal-air mixture. Chin. J. High Press. Phys., 26(4):455–461.
  • Onifade, M., and Genc, B. 2018. Spontaneous combustion of coals and coal-shales. Int. J. Mining Sci. Technol..
  • Porada, S. 2004. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis. Fuel, 83(7), 1071–1078. doi:10.1016/j.fuel.2003.11.004
  • Qian, J., Liu, Z., Lin, S., Li, X., Hong, S., and Li, D. 2017. Characteristics analysis of post-explosion coal dust samples by x-ray diffraction. Combust. Sci. Technol. 190(4), 740–754.
  • Sing, K. 2001. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf. Physicochem. Eng. Asp., 187, 3–9. doi:10.1016/S0927-7757(01)00612-4
  • State Administration of Work State (SAWS). 2014. Urgent Notice to Strengthen Prevention and Control of Coal Dust and Prevent Coal Dust Explosion Accidents, State Administration of Work State, Beijing, China.
  • Wang, L. 2016. Study on the explosion characteristics and suppression of coal dust in the limited space. Master Thesis. China University of Mining & Technology.
  • Wu, B., Guo, Z.G., Chen, J., and Ma, X.L. 2018. Comparative research on the fire-extinguishing effects of N2 & CO2 on the whole process of coal combustion. J. China Univ. Mining Technol., 47(2):247–256.
  • Wu, Z.M., Hu, D.W., Ren, J., and Xie, K.C. 2001. Study on surface of coal during combustion. J. Fuel Chem. Technol., 29(1):24–28.
  • Xu, S., Liu, J., Cao, W., Li, Y., and Cao, W. 2017. Experimental study on the minimum ignition temperature and combustion kinetics of coal dust/air mixtures. Powder Technol., 317, 154–161. doi:10.1016/j.powtec.2017.04.059
  • Yu, J., Zhang, X., Zhang, Q., Wang, L., Ji, K., Peng, L., and Gao, W. 2016. Combustion behaviors and flame microstructures of micro- and nano-titanium dust explosions. Fuel, 181, 785–792. doi:10.1016/j.fuel.2016.05.085
  • Yuan, J., Wei, W., Huang, W., Du, B., Liu, L., and Zhu, J. 2014. Experimental investigations on the roles of moisture in coal dust explosion. J. Taiwan Inst. Chem. Eng., 45(5), 2325–2333. doi:10.1016/j.jtice.2014.05.022
  • Zhang, H. 2009. Study on the influence of mineral matters on the combustion characteristics and kinetics of pulverized coals. J. China Univ. Mining Technol., 44(5):823–828.
  • Zhang, S. 2016. Study on characteristics of coal dust explosion residues and identifications of material evidence. Master Thesis. China University of Mining & Technology.
  • Zhang, X., Yu, J., Gao, W., Zhang, D., Sun, J., Guo, S. et al. 2017. Effects of particle size distributions on pmma dust flame propagation behaviors. Powder Technol., 317, 197–208.
  • Zhang, X., Yu, J., Yan, X., Xie, Q., and Gao, W. 2016. Flame propagation behaviors of nano- and micro-scale pmma dust explosions. J. Loss Prev. Ind., 40, 101–111. doi:10.1016/j.jlp.2015.12.010
  • Zhu, Y.H., and Hao, L.S. 2009. Coal Chemistry, Chemical Industry Press,Beijing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.