286
Views
10
CrossRef citations to date
0
Altmetric
Articles

Effects of Reaction Progress Variable Definition on the Flame Surface Density Transport Statistics and Closure for Different Combustion Regimes

, ORCID Icon, & ORCID Icon
Pages 1276-1293 | Received 11 Jul 2018, Accepted 10 Sep 2018, Published online: 04 Oct 2018

References

  • Arias, P.G., Chaudhuri, S., Uranakara, H.A., and Im, H.G. 2016. Direct numerical simulations of statistically stationary turbulent premixed flame. Combust. Sci. Technol., 188, 1182.
  • Boger, M., Veynante, D., Boughanem, H., and Trouvé, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst., 27, 917.
  • Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., and Klippenstein, S.J. 2012. Comprehensive H2-O2 kinetic model for high-pressure combustion. Int. J. Chem. Kin., 44, 444.
  • Candel, S., Veynante, D., Lacas, F., Maistret, E., Darabhia, N., and Poinsot, T. 1990. Coherent flamelet model: applications and recent extensions, In Larrouturou, B.E. (Ed.), Recent Advances in Combustion Modelling, World Scientific, Singapore, 19.
  • Candel, S.M., and Poinsot, T.J. 1990. Flame stretch and the balance equation for the flame area. Combust. Sci. Technol., 70, 1–15.
  • Cant, R.S., and Bray, K.N.C. 1989. Strained laminar flamelet calculations of premixed turbulent combustion in a closed vessel. Proc. Combust. Inst., 22, 791.
  • Cant, R.S., Pope, S.B., and Bray, K.N.C. 1990. Modelling of flamelet surface to volume ratio in turbulent premixed combustion. Proc. Combust. Inst., 27, 809.
  • Chakraborty, N., and Cant, R.S. 2005. Effects of strain rate and curvature on surface density function transport in turbulent premixed flames in the thin reaction zones regime. Phys. Fluids, 17, 65108.
  • Chakraborty, N., and Cant, R.S. 2006. Statistical behaviour and modelling of flame normal vector in turbulent premixed flames. Numer. Heat Trans. A, 50, 623.
  • Chakraborty, N., and Cant, R.S. 2007. A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation. Phys. Fluids, 19, 105101.
  • Chakraborty, N., and Cant, R.S. 2009a. Physical insight and modelling for Lewis number effects on turbulent heat and mass transport in turbulent premixed flames. Numer. Heat Trans. A, 55, 8, 762.
  • Chakraborty, N., and Cant, R.S. 2009b. Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames. Combust. Flame, 156, 1427.
  • Chakraborty, N., and Cant, R.S. 2011. Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame, 158, 1768.
  • Chakraborty, N., and Cant, R.S. 2013. Turbulent Reynolds number dependence of flame surface density transport in the context of Reynolds averaged Navier–Stokes simulations. Proc. Combust. Inst., 34, 1347.
  • Chakraborty, N., Hawkes, E.R., Chen, J.H., and Cant, R.S. 2008. Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4-air and H2-air flames: a comparative study. Combust. Flame, 154, 259.
  • Chakraborty, N., and Klein, M. 2008a. A-priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids, 20, 085108.
  • Chakraborty, N., and Klein, M. 2008b. Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids, 20, 065102.
  • Chakraborty, N., Klein, M., Alwazzan, D., and Im, H.G. 2018. Surface density function statistics in hydrogen-air flames for different turbulent premixed combustion regimes. Combust. Sci. Technol. doi:10.1080/00102202.2018.1480015.
  • Chakraborty, N., and Swaminathan, N. 2007. Influence of Damköhler number on turbulence-scalar interaction in premixed flames, Part I: physical insight. Phys. Fluids, 19, 045103.
  • Charlette, F., Meneveau, C., and Veynante, D. 2002. A power law wrinkling model for LES of premixed turbulent combustion, Part I: non dynamic formulation and initial tests. Combust. Flame, 131, 159.
  • Colin, O., Benkenida, A., and Angelberger, C. 2003. 3D modeling of mixing, ignition and combustion, phenomena in highly stratified gasoline engines. Oil Gas Sci. Technol. – Rev. IFP, 58, 1, 47–62.
  • Colin, O., Ducros, F., Veynante, D., and Poinsot, T. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids A, 12, 1843.
  • Duclos, J.M., Veynante, D., and Poinsot, T. 1993. A comparison of flamelet models for turbulent premixed combustion. Combust. Flame, 95, 101.
  • Hawkes, E.R., and Cant, R.S. 2001a. Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame, 126, 1617.
  • Hawkes, E.R., and Cant, R.S. 2001b. Physical and numerical realizability requirements for flame surface density approaches to large-eddy and Reynolds averaged simulation of premixed turbulent combustion. Combust. Theor. Model, 5, 699.
  • Hernandez-Perez, F.E., Yuen, F.T.C., Groth, C.P.T., and Gülder, Ö.L. 2011. LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proc. Combust. Inst., 33, 1365.
  • Han, I., and Huh, K.Y. 2008. Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame, 152, 194.
  • Im, H.G., and Chen, J.H. 2002. Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames. Combust. Flame, 126, 246.
  • Katragadda, M., Malkeson, S.P., and Chakraborty, N. 2011. Modelling of the tangential strain rate term of the flame surface density transport equation in the context of Reynolds averaged Navier–Stokes simulation. Proc. Combust. Inst., 33, 1429.
  • Keppeler, R., Tangermann, E., Allaudin, U., and Pfitzner, M. 2014. LES of low to high turbulent combustion in an elevated pressure environment. Flow Turb. Combust., 92, 767.
  • Klein, M., Chakraborty, N., and Pfitzner, M. 2016. Analysis of the combined modelling of subgrid transport and filtered flame propagation for premixed turbulent combustion. Flow Turb. Combust., 96, 921.
  • Klein, M., Kasten, C., Chakraborty, N., and Im, H.G. 2018. Turbulent scalar fluxes in hydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theor. Modell. doi:10.1080/13647830.2018.1468034.
  • Knikker, R., Veynante, D., and Meneveau, C. 2002. A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion. Proc. Combust. Inst., 29, 2105.
  • Li, S.C., and Kong, Y.H. 2008. Diesel combustion modelling using LES turbulence model with detailed chemistry. Combust. Theor. Model, 12, 205–219.
  • Lindstedt, R.P., and Vaos, E.M. 1999. Modelling of premixed turbulent flames with second moment methods. Combust. Flame, 116, 461.
  • Ma, T., Stein, T.O., Chakraborty, N., and Kempf, A.M. 2013. A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Modell., 17, 431.
  • Ma, T., Stein, T.O., Chakraborty, N., and Kempf, A.M. 2014. A-posteriori testing of the flame surface density transport equation for LES. Combust. Theory Modell., 18, 32.
  • Meneveau, C., and Poinsot, T. 1991. Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame, 86, 311.
  • Papapostolou, V., Chakraborty, N., Klein, M., and Im, H.G. 2018. Statistics of scalar flux transport of major species in different premixed turbulent combustion regimes for turbulent H2-air flames. Proc. Turb. Heat and Mass Trans. 2018, 10th −13th July, Rio de Jeneiro, Brazil.
  • Passot, T., and Pouquet, A. 1987. Compressible turbulence with a perfect gas law: a numerical. approach. J. Fluid Mech, 181, 441.
  • Peters, N. 2000. Turbulent Combustion, Cambridge Monograph on Mechanics, Cambridge University Press, Cambridge.
  • Reddy, H., and Abraham, J. 2012. Two-dimensional direct numerical simulation evaluation of the flame-surface density model for flames developing from an ignition kernel in lean methane/air mixtures under engine conditions. Phys. Fluids, 24, 105108.
  • Rogallo, R.S. 1981. Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315. NASA Ames Research Center, California.
  • Sabelnikov, V., Lipatnikov, A.N., Chakraborty, N., Nishiki, S., and Hasagawa, T. 2017. A balance equation for the mean rate of product creation in premixed turbulent flames. Proc. Combust. Inst., 36, 1893.
  • Sellmann, J., Lai, J., Chakraborty, N., and Kempf, A.M. 2017. Flame surface density based modelling of head-on quenching of turbulent premixed flames. Proc. Combust. Inst., 36, 1817.
  • Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., and Veynante, D. 2009. Towards the understanding of cyclic variability in a spark ignited engine using multicycle LES. Combust. Flame, 156, 525–1541.
  • Veynante, D., Piana, J., Duclos, J.M., and Martel, C. 1996. Experimental analysis of flame surface density models for premixed turbulent combustion. Proc. Combust. Inst., 26, 413.
  • Veynante, D., Trouvé, A., Bray, K.N.C., and Mantel, T. 1997. Gradient and counter-gradient scalar transport in turbulent premixed flames. Proc. Combust. Inst., 26, 413.
  • Wacks, D.H., Chakraborty, N., Klein, M., Arias, P.G., and Im, H.G. 2016. Flow topologies in different regimes of premixed turbulent combustion: a direct numerical simulation analysis. Phys. Rev. F, 1, 083401.
  • Yeung, P.K., Girimaji, S.S., and Pope, S.B. 1990. Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets. Combust. Flame, 79, 340.
  • Yoo, C.S., Wang, Y., Trouve, A., and Im, H.G. 2005. Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theor. Modell., 9, 617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.