220
Views
7
CrossRef citations to date
0
Altmetric
Articles

Numerical Study on the Propagation of Premixed Flames in Confined Narrow Disc-Shape Chambers

ORCID Icon, , , &
Pages 1380-1404 | Received 17 May 2018, Accepted 20 Sep 2018, Published online: 19 Oct 2018

References

  • Akkerman, V., Bychkov, V., Petchenko, A., and Eriksson, L.E. 2006. Accelerating flames in cylindrical tubes with nonslip at the walls. Combust. Flame, 145, 206–219. doi: 10.1016/j.combustflame.2005.10.011.
  • Demirgok, B., Ugarte, O., Valiev, D., and Akkerman, V. 2015. Effect of thermal expansion on flame propagation in channels with nonslip walls. Proc. Combust. Instit., 35, 929–936. doi: 10.1016/j.proci.2014.07.031.
  • Ellis, O.C. 1928. Flame movement in gaseous explosive mixtures. (part 7.). Fuel in Science and Practice, 7, 502–508.
  • Gamezo, V.N., and Oran, E.S. 2006. Flame acceleration in narrow channels: applications for micropropulsion in low-gravity environments. Aiaa Journal, 44, 329–336. doi: 10.2514/1.16446.
  • Huo, J., Yang, H., Jiang, L., Wang, X., and Zhao, D. 2016. A modeling study of the effect of surface reactions on methanol–air oxidation at low temperatures. Combust. Flame, 164, 363–372. doi: 10.1016/j.combustflame.2015.11.033.
  • Jafargholi, M., Giannakopoulos, G.K., Frouzakis, C.E., and Boulouchos, K. 2018. Laminar syngas–air premixed flames in a closed rectangular domain: dns of flame propagation and flame/wall interactions. Combust. Flame, 188, 453–468. doi: 10.1016/j.combustflame.2017.09.029.
  • Ju, Y., and Xu, B. 2006. Effects of channel width and lewis number on the multiple flame regimes and propagation limits in mesoscale. Combust. Sci. Technol., 178, 1723–1753. doi: 10.1080/00102200600788643.
  • Kagan, L., Gordon, P., and Sivashinsky, G. 2015. An asymptotic study of the transition from slow to fast burning in narrow channels. Proc. Combust. Instit., 35, 913–920. doi: 10.1016/j.proci.2014.06.096.
  • Kagan, L., and Sivashinsky, G. 2013. Hydrodynamic aspects of end-gas autoignition. Proc. Combust. Instit., 34, 857–863. doi: 10.1016/j.proci.2012.06.038.
  • Kaisare, N.S., and Vlachos, D.G. 2012. A review on microcombustion: fundamentals, devices and applications. Prog. Energy Combust. Sci., 38, 321–359. doi: 10.1016/j.pecs.2012.01.001.
  • Kang, X., Gollan, R.J., Jacobs, P.A., and Veeraragavan, A. 2017. On the influence of modelling choices on combustion in narrow channels. Computers & Fluids, 144, 117–136. doi: 10.1016/j.compfluid.2016.11.017.
  • Karlin, V., Makhviladze, G., Roberts, J., and Melikhov, V.I. 2000. Effect of lewis number on flame front fragmentation in narrow closed channels. Combust. Flame, 120, 173–187. doi: 10.1016/S0010-2180(99)00083-8.
  • Kim, N., and Maruta, K. 2006. A numerical study on propagation of premixed flames in small tubes. Combust. Flame, 146, 283–301. doi: 10.1016/j.combustflame.2006.03.004.
  • Kurdyumov, V.N., and Matalon, M. 2015. Self-accelerating flames in long narrow open channels. Proc. Combust. Instit., 35, 921–928. doi: 10.1016/j.proci.2014.05.082.
  • Kurdyumov, V.N., Pizza, G., Frouzakis, C.E., and Mantzaras, J. 2009. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature. Combust. Flame, 156, 2190–2200. doi: 10.1016/j.combustflame.2009.08.001.
  • Law, C.K. 2006. Combustion Physics. New York. Cambridge university press.
  • Matalon, M., and Metzener, P. 1997. The propagation of premixed flames in closed tubes. J. Fluid Mech., 336, 331–350. doi: 10.1017/S0022112096004843.
  • McGreevy, J.L., and Matalon, M. 1992. Lewis number effect on the propagation of premixed flames in closed tubes. Combust. Flame, 91, 213–225. doi: 10.1016/0010-2180(92)90054-S.
  • Navaneetha, A. 2013. Propagation of Premixed Flames in Confined Channels. University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Sánchez–Sanz, M., Fernández-Galisteo, D., and Kurdyumov, V.N. 2014. Effect of the equivalence ratio, damköhler number, lewis number and heat release on the stability of laminar premixed flames in microchannels. Combust. Flame, 161, 1282–1293. doi: 10.1016/j.combustflame.2013.11.015.
  • Wang, H., You, X.Q., Joshi, A.V., Davis, A.G., Laskin, A., Egolfopoulos, F., and Law, C.K. (2007) Usc mech version ii. High-temperature combustion reaction model of h2/co/c1-c4 compounds. http://ignis.Usc.Edu/usc_mech_ii.Htm.
  • Wang, Z., Liu, H., and Reitz, R.D. 2017a. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci., 61, 78–112. doi: 10.1016/j.pecs.2017.03.004.
  • Wang, Z.Y., Magi, V., and Abraham, J. 2017b. Turbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions. Combust. Flame, 180, 53–62. doi: 10.1016/j.combustflame.2017.02.023.
  • Westbrook, C.K., and Dryer, F.L. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol., 27, 31–43. doi: 10.1080/00102208108946970.
  • Williams, F.A. 1985. Combustion theory second ed. Addison–Wesley Publishing Co.. Redwood City, CA. pp. 12-13.
  • Wu, M.H., and Kuo, W.C. 2013. Accelerative expansion and ddt of stoichiometric ethylene/oxygen flame rings in micro-gaps. Proc. Combust. Instit., 34, 2017–2024. doi: 10.1016/j.proci.2012.07.008.
  • Wu, M.H., and Wang, C.Y. 2011. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures. Proc. Combust. Instit., 33, 2287–2293. doi: 10.1016/j.proci.2010.07.081.
  • Xiao, H.H., An, W.G., Duan, Q.L., and Sun, J.H. 2013. Dynamics of premixed hydrogen/air flame in a closed combustion vessel. Int. J. Hydrogen Energ., 38, 12856–12864. doi: 10.1016/j.ijhydene.2013.07.082.
  • Xiouris, C., Ye, T.L., Jayachandran, J., and Egolfopoulos, F.N. 2016. Laminar flame speeds under engine-relevant conditions: uncertainty quantification and minimization in spherically expanding flame experiments. Combust. Flame, 163, 270–283. doi: 10.1016/j.combustflame.2015.10.003.
  • Yu, H., and Chen, Z. 2015. End-gas autoignition and detonation development in a closed chamber. Combust. Flame, 162, 4102–4111. doi: 10.1016/j.combustflame.2015.08.018.
  • Zhou, M., and Garner, C.P. 1996. Direct measurements of burning velocity of propane-air using particle image velocimetry. Combust. Flame, 106, 363–367. doi: 10.1016/0010-2180(96)00002-8.
  • Zhou, X., Zhang, Z., Kong, W., and Du, N. 2016. Investigations of leakage mechanisms and its influences on a micro swing engine considering rarefaction effects. Appl. Therm. Eng., 106, 674–680. doi: 10.1016/j.applthermaleng.2016.06.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.