568
Views
12
CrossRef citations to date
0
Altmetric
Articles

Experimental Study on Flame‒Flame Interaction and Its Merging Features Induced by Double Rectangular Propane Diffusion Burners With Various Aspect Ratios

, , , &
Pages 1416-1429 | Received 09 May 2018, Accepted 24 Sep 2018, Published online: 17 Oct 2018

References

  • Babrauskas, V. 1983. Estimating large pool fire burning rates. Fire Technol., 19, 251. doi:10.1007/BF02380810
  • Caldeire-Pires, A., and Heitoe, M.V. 1999. On the analysis of propane jet flames in mutual interaction. Combust. Sci. Technol., 141, 37. doi:10.1080/00102209908924181
  • Chen, Z.B., Satoh, K., Wen, J., Huo, R., and Hu, L.H. 2009. Burning behavior of two adjacent pool fires behind a building in a cross-wind. Fire Safety J., 44, 989–996. doi:10.1016/j.firesaf.2009.06.006
  • Chigier, N.A., and Apak, G. 1975. Interaction of multiple turbulent diffusion flames. Combust. Sci. Technol., 10, 219. doi:10.1080/00102207508946674
  • Delichatsios, M.A. 2007. A correlation for the flame height in “Group” fires. Fire Sci. Technol., 26(1), 1–8. doi:10.3210/fst.26.1
  • Fukuda, Y., Kamikawa, D., Hasemi, Y., and Kagiya, K. 2004. Flame Characteristics of Group Fires. Fire Sci. Tech., 23, 164. doi:10.3210/fst.23.164
  • Hasemi, Y., and Nishihata, M. 1989. Fuel shape effect on the deterministic properties of turbulent diffusion flames. Fire Safety Sci., 38, 29.
  • Hirasawa, T., Gotanda, K., Masuda, H., and Nakamura, Y. 2012. Impact of flame interactions in identical twin diffusion microflames. Combust. Sci. Technol., 184, 10. doi:10.1080/00102202.2012.699362
  • Hu, L.H., Huang, L.L., Wang, Q., and Kuwana, K. 2017. Experimental study and analysis on the interaction between two slot-burner buoyant turbulent diffusion flames at various burner pitches. Combust. Flame, 186, 105. doi:10.1016/j.combustflame.2017.07.033
  • Hu, L.H., Lu, K.H., Delichatsios, M., He, L.H., and Tang, F. 2012. An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening. Combust. Flame, 159, 1178–1184. doi:10.1016/j.combustflame.2011.09.018
  • Hu, L.H., Tang, F., Wang, Q., and Qiu, Z.W. 2013. Burning characteristics of conduction-controlled rectangular hydrocarbon pool fires in a reduced pressure atmosphere at high altitude in Tibet. Fuel, 111, 298. doi:10.1016/j.fuel.2013.04.032
  • Jiao, Y., Gao, W., Liu, N.A., Lei, J., Xie, X.D., Zhang, L.H., and Tu, R. 2018. Interpretation on fire interaction mechanisms of multiple pool fires. Proc. Combust. Inst., 37, 1–8.
  • Kamikawa, D., Weng, W.G., Kagiya, K., Fukuda, Y., Mase, R., and Hasemi, Y. 2005. Experimental study of merged flames from multifire sources in propane and wood crib burners. Combust. Flame, 142, 17. doi:10.1016/j.combustflame.2005.02.004
  • Kuwana, K., Kato, S., Kosugi, A., Irasawa, T., and Nakamura, H.Y. 2016. Experimental and theoretical study on the interaction between two identical micro-slot diffusion flames: burner pitch effects. Combust. Flame, 165, 346. doi:10.1016/j.combustflame.2015.12.017
  • Lee, B.G., Kim, J.S., and Lee, S. 2004. Enhancement of blowout limit by the interaction of multiple nonpremixed jet flames. Combust. Sci. Technol., 176, 481. doi:10.1080/00102200490276700
  • Liu, N.A., Liu, Q., Deng, Z.H., Satoh, K., and Zhu, J.P. 2007. Burn-out time data analysis on interaction effects among multiple fires in fire arrays. Proc. Combust. Inst., 31, 2589. doi:10.1016/j.proci.2006.08.110
  • Liu, N.A., Liu, Q., Lozano, J.S., Shu, L.F., Zhang, L.H., Zhu, J.P., Deng, Z.H., and Satoh, K. 2009. Global burning rate of square fire arrays: experimental correlation and interpretation. Proc. Combust. Inst., 32, 2519. doi:10.1016/j.proci.2008.06.086
  • Liu, N.A., Liu, Q., Lozano, J.S., Zhang, L.H., Deng, Z.H., Yao, B., Zhu, J.P., and Satoh, K. 2013. Multiple fire interactions: a further investigation by burning rate data of square fire arrays. Proc. Combust. Inst., 34, 2555. doi:10.1016/j.proci.2012.06.098
  • Lu, K.H., Hu, L.H., Delichatsios, M., Tang, F., Qiu, Z.W., and He, L.H. 2015. Merging behavior of facade flames ejected from two windows of an under-ventilated compartment fire. Proc. Combust. Inst., 35, 2015. doi:10.1016/j.proci.2014.05.083
  • Ma, P.Y., Wang, B.G., Kong, D.P., Tao, C.F., and Chu, H.Q. 2018. An experimental study of the merging probability of double buoyancy controlled jet flames. Exp. Heat Transfer, 31, 121. doi:10.1080/08916152.2017.1397816
  • Nozaki, R., Nakamura, Y.J., and Kitajima, A. 2012. Study on Ignition-like behavior induced by interaction of curved non-premixed (diffusion) flames. Combust. Sci. Technol., 184, 1541. doi:10.1080/00102202.2012.690320
  • Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern., 9, 62. doi:10.1109/TSMC.1979.4310076
  • Quintiere, J.G. 2006. Fundamentals of Fire Phenomena, John Wiley & Sons, England, Chap. 10, pp. 297–334.
  • Sugawa, O., and Oka, Y. 2003. Experimental study on flame merging behavior from 2 by 3 configuration model fire sources. Fire Safety Sci., 7, 891. doi:10.3801/IAFSS.FSS.7-891
  • Sun, H., Wang, C.J., Liu, H.R., Li, M.H., Zhang, A.F., and Xu, M.J. 2018. Burning behavior and parameter analysis of biodiesel pool fires. Combust. Sci. Technol., 190, 269.
  • Tang, F., Hu, L.H., Qiu, Z.W., and Wang, Q. 2014. A global model of plume axial temperature profile transition from axisymmetric to line-source pool fires in normal and reduced pressures. Fuel, 130, 211. doi:10.1016/j.fuel.2014.04.053
  • Tang, F., Zhu, K.J., Dong, M.S., and Shi, Q. 2015. Mean flame height and radiative heat flux characteristic of medium scale rectangular thermal buoyancy source with different aspect ratios in a sub-atmospheric pressure. Int. J. Heat Mass Tran., 84, 427. doi:10.1016/j.ijheatmasstransfer.2015.01.037
  • Tao, C.F., He, Y.P., Zhuang, Y., Qian, Y.J., Cheng, X.Z., and Wang, X.S. 2017. The investigation of flame length of buoyancy-controlled gas fire bounded by wall and ceiling. Appl. Therm. Eng., 127, 1172–1183. doi:10.1016/j.applthermaleng.2017.08.123
  • Tao, C.F., Shen, Y., and Zong, R.W. 2016. Experimental determination of flame length of buoyancy-controlled turbulent jet diffusion flames from inclined nozzles. Appl. Therm. Eng., 93, 884–887. doi:10.1016/j.applthermaleng.2015.09.049
  • Tu, R., Fang, J., Zhang, Y.M., Zhang, J., and Zeng, Y. 2013. Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires. Proc. Combust. Inst., 34, 2591. doi:10.1016/j.proci.2012.06.036
  • Vasanth, S., Tauseef, S.M., Abbasi, T., and Abbasi, S.A. 2014. Assessment of the effect of pool size on burning rates of multiple pool fires using CFD. J. Loss Prevent Proc., 30, 86. doi:10.1016/j.jlp.2014.04.011
  • Vasanth, S., Tauseef, S.M., Abbasi, T., and Abbasi, S.A. 2015. CFD simulation of pool fires situated at differing elevation. Process Saf. Environ., 94, 89–95. doi:10.1016/j.psep.2015.01.001
  • Vasanth, S., Tauseef, S.M., Abbasi, T., and Abbasi, S.A. 2017. Simulation of multiple pool fires involving two different fuels. J. Loss Prevent Proc., 48, 289–296. doi:10.1016/j.jlp.2017.04.031
  • Wan, H.X., Gao, Z.H., Ji, J., Wang, L.Z., and Zhang, Y.M. 2018. Experimental study on merging behaviors of two identical buoyant diffusion flames under an unconfned ceiling with varying heights. Proc. Combust. Inst., doi:10.1016/j.proci.2018.05.154
  • Wan, H.X., Ji, J., Li, K.Y., Huang, X.Y., Sun, J.H., and Zhang, Y.M. 2017. Effect of air entrainment on the height of buoyant turbulent diffusion flames for two fires in open space. Proc. Combust. Inst., 36, 3003. doi:10.1016/j.proci.2016.07.078
  • Weng, W.G., Kamikawa, D., Fukuda, Y., Hasemi, Y., and Kagiya, K. 2004. Study on flame height of merged flame from multiple fire sources. Combust. Sci. Technol., 176, 2105. doi:10.1080/00102200490514949
  • Weng, W.G., Kamikawa, D., and Hasemi, Y. 2015. Experimental study on merged flame characteristics from multifire sources with wood cribs. Proc. Combust. Inst., 35, 2597. doi:10.1016/j.proci.2014.05.112
  • Yuan, L.M., and Cox, G. 1996. An experimental study of some line fires. Fire Saf. J., 27, 123.
  • Zukoski, E.E. 1995. Properties of fire plumes. In Combustion Fundamentals of Fire, Ed.Cox, G., Academic Press, London.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.