700
Views
15
CrossRef citations to date
0
Altmetric
Articles

Micromixing Models for PDF Simulations of Turbulent Premixed Flames

, , , , , & show all
Pages 1430-1455 | Received 17 Aug 2018, Accepted 27 Sep 2018, Published online: 10 Oct 2018

References

  • Beguier, C., Dekeyser, I., and Launder, B.E. 1978. Ratio of scalar and velocity dissipation time scales in shear-flow turbulence. Phys. Fluids. 21, 307–310. doi:10.1063/1.862228
  • Bray, K., Champion, M., Libby, P.A., and Swaminathan, N. 2011. Scalar dissipation and mean reaction rates in premixed turbulent combustion. Combust. Flame. 158, 2017–2022. doi:10.1016/j.combustflame.2011.03.009
  • Cannon, S.M., Brewster, B.S., and Smoot, L.D. 1999. PDF modeling of lean premixed combustion using in situ tabulated chemistry. Combust. Flame. 119, 233–252. doi:10.1016/S0010-2180(99)00057-7
  • Cao, R.R., Wang, H., and Pope, S.B. 2007. The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31, 1543–1550. doi:10.1016/j.proci.2006.08.052
  • Chakraborty, N., Rogerson, J.W., and Swaminathan, N. 2008. A priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids, 20, 045106 (15 pp.)-045106 (15 pp.).
  • Chakraborty, N., and Swaminathan, N. 2007. Influence of the Damkohler number on turbulence-scalar interaction in premixed flames. II. Model development. Phys. Fluids, 19, 045103 (10 pp.)-045103(10 pp.).
  • Chakraborty, N., and Swaminathan, N. 2011. Effects of Lewis number on scalar variance transport in premixed flames. Flow, Turbul. Combust. 87, 261–292. doi:10.1007/s10494-010-9305-0
  • Chen, H.D., Chen, S.Y., and Kraichnan, R.H. 1989. Probability-distribution of a stochastically advected scalar field. Phys. Rev. Lett. 63, 2657–2660. doi:10.1103/PhysRevLett.63.2657
  • Chen, J.H., Choudhary, A., DE SUPINSKI, B., Devries, M., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., and Yoo, C.S. 2009. Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discov., 2, 015001 (31 pp.)-015001 (31 pp.).
  • Curl, R.L. 1963. Dispersed phase mixing .1. Theory and effects in simple reactors. Aiche J. 9, 175–181. doi:10.1002/aic.690090207
  • Dopazo, C. 1979. Relaxation of initial probability density functions in the turbulent convection of scalar fields. Phys. Fluids. 22, 20–30. doi:10.1063/1.862431
  • Dopazo, C., and O’brien, E.E. 1974. An approach to the autoignition of a turbulent mixture. Acta Astronaut. 1, 1239–1266. doi:10.1016/0094-5765(74)90050-2
  • Drake, M.C., and Haworth, D.C. 2007. Advanced gasoline engine development using optical diagnostics and numerical modeling. Proc. Combust. Inst. 31, 99–124. doi:10.1016/j.proci.2006.08.120
  • Dunn, M.J., Masri, A.R., and Bilger, R.W. 2007. A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame. 151, 46–60. doi:10.1016/j.combustflame.2007.05.010
  • Dunn, M.J., Masri, A.R., Bilger, R.W., and Barlow, R.S. 2010. Finite rate chemistry effects in highly sheared turbulent premixed flames. Flow Turbul. Combust. 85, 621–648. doi:10.1007/s10494-010-9280-5
  • Fox, R., M., Cha, C., and Trouillet, P. 2002. Lagrangian PDF Mixing Models for Reacting Flows. Stanford. Center for Turbulence Research Proceedings of the Summer Program 2002.
  • Galindo, S., Salehi, F., Cleary, M.J., and Masri, A.R. 2017. MMC-LES simulations of turbulent piloted flames with varying levels of inlet inhomogeneity. Proc. Combustion Inst. 36, 1759–1766. doi:10.1016/j.proci.2016.07.055
  • Han, W., Raman, V., and Chen, Z. 2016. LES/PDF modeling of autoignition in a lifted turbulent flame: analysis of flame sensitivity to differential diffusion and scalar mixing time-scale. Combust. Flame. 171, 69–86. doi:10.1016/j.combustflame.2016.05.027
  • Hawkes, E.R., Chatakonda, O., Kolla, H., Kerstein, A.R., and Chen, J.H. 2012. A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame. 159, 2690–2703. doi:10.1016/j.combustflame.2011.11.020
  • Hawkes, E.R., Sankaran, R., Sutherland, J.C., and Chen, J.H. 2007. Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics. Proc. Combust. Inst. 31, 1633–1640. doi:10.1016/j.proci.2006.08.079
  • Haworth, D.C. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259. doi:10.1016/j.pecs.2009.09.003
  • James, S., Zhu, J., and Anand, M.S. 2006. Large-eddy simulations as a design tool for gas turbine combustion systems. Aiaa J. 44, 674–686. doi:10.2514/1.15390
  • Janicka, J., Kolbe, W., and Kollmann, W. 1979. Closure of the transport-equation for the probability density-function of turbulent scalar fields. J. Non-Equilibrium Thermodyn. 4, 47–66. doi:10.1515/jnet.1979.4.1.47
  • Kha, K.Q.N., Robin, V., Mura, A., and Champion, M. 2016. Implications of laminar flame finite thickness on the structure of turbulent premixed flames. J. Fluid Mech. 787, 116–147. doi:10.1017/jfm.2015.660
  • Kim, N., and Kim, Y. 2017. Multi-environment probability density function approach for turbulent partially-premixed methane/air flame with inhomogeneous inlets. Combust. Flame. 182, 190–205. doi:10.1016/j.combustflame.2017.04.020
  • Kolla, H. 2010. Scalar dissipation rate based flamelet modelling of turbulent premixed flames. Doctor of Philosophy (PhD) Doctoral thesis, University of Cambridge.
  • Kolla, H., Rogerson, J.W., Chakraborty, N., and Swaminathan, N. 2009. Scalar dissipation rate modeling and its valiation. Combust. Sci. Technol. 181, 518–535. doi:10.1080/00102200802612419
  • Krisman, A., Tang, J.C.K., Hawkes, E.R., Lignell, D.O., and Chen, J.H. 2014. A DNS evaluation of mixing models for transported PDF modelling of turbulent nonpremixed flames. Combust. Flame. 161, 2085–2106. doi:10.1016/j.combustflame.2014.01.009
  • Kuron, M., Hawkes, E.R., Ren, Z., Tang, J.C.K., Zhou, H., Chen, J.H., and Lu, T. 2017a. Performance of transported PDF mixing models in a turbulent premixed flame. Proc. Combustion Inst. 36, 1987–1995. doi:10.1016/j.proci.2016.05.019
  • Kuron, M., Ren, Z., Hawkes, E.R., Zhou, H., Kolla, H., Chen, J.H., and Lu, T. 2017b. A mixing timescale model for TPDF simulations of turbulent premixed flames. Combust. Flame. 177, 171–183. doi:10.1016/j.combustflame.2016.12.011
  • Li, J., Zhao, Z.W., Kazakov, A., and Dryer, F.L. 2004. An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575. doi:10.1002/(ISSN)1097-4601
  • Lindstedt, R.P., Louloudi, S.A., and Vaos, E.M. 2000. Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. Proc. Combustion Inst. 28, 149–156. doi:10.1016/S0082-0784(00)80206-4
  • Lindstedt, R.P., and Vaos, E.M. 2000. Modeling of mixing processes in non-isothermal and combusting flows. Adv. Turbul, VIII, 493–496.
  • Lindstedt, R.P., and Vaos, E.M. 2006. Transported PDF modeling of high-Reynolds-number premixed turbulent flames. Combust. Flame. 145, 495–511. doi:10.1016/j.combustflame.2005.12.015
  • Lu, T.F., Yoo, C.S., Chen, J.H., and Law, C.K. 2010. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis. J. Fluid Mech. 652, 45–64. doi:10.1017/S002211201000039X
  • Luo, Z., Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K., and Lu, T. 2012. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame. 159, 265–274. doi:10.1016/j.combustflame.2011.05.023
  • Mantel, T., and Borghi, R. 1994. A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame. 96, 443–457. doi:10.1016/0010-2180(94)90110-4
  • Masri, A.R., Cao, R., Pope, S.B., and Goldin, G.M. 2004. PDF calculations of turbulent lifted flames of H-2/N-2 fuel issuing into a vitiated co-flow. Combust. Theor. Model. 8, 1–22. doi:10.1088/1364-7830/8/1/001
  • Meares, S., Prasad, V.N., Magnotti, G., Barlow, R.S., and Masri, A.R. 2015. Stabilization of piloted turbulent flames with inhomogeneous inlets. Proc. Combustion Inst. 35, 1477–1484. doi:10.1016/j.proci.2014.05.071
  • Merci, B., Roekaerts, D., Naud, B., and Pope, S.B. 2006. Comparative study of micromixing models in transported scalar PDF simulations of turbulent nonpremixed bluff body flames. Combust. Flame. 146, 109–130. doi:10.1016/j.combustflame.2006.04.010
  • Mitarai, S., Riley, J.J., and Kosaly, G. 2005. Testing of mixing models for Monte Carlo probability density function simulations. Phys. Fluids, 17. doi:10.1063/1.1863319
  • Pierce, C.D. 2001. Progress-variable approach for large-eddy simulation of turbulent combustion. Doctor of Philosophy (PhD), Stanford University.
  • Pope, S.B. 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192. doi:10.1016/0360-1285(85)90002-4
  • Pope, S.B. 1991. Mapping closures for turbulent mixing and reaction. Theor. Comput. Fluid Dyn. 2, 255–270. doi:10.1007/BF00271466
  • Pope, S.B. 2013a. A model for turbulent mixing based on shadow-position conditioning. Phys. Fluids, 25. doi:10.1063/1.4818981
  • Pope, S.B. 2013b. Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combustion Inst. 34, 1–31. doi:10.1016/j.proci.2012.09.009
  • Pope, S.B., and Anand, M.S. 1985. Flamelet and distributed combustion in premixed turbulent flames. Symp. (Int.) Combust. 20, 403–410. doi:10.1016/S0082-0784(85)80527-0
  • Popov, P.P., and Pope, S.B. 2014. Large eddy simulation/probability density function simulations of bluff body stabilized flames. Combust. Flame. 161, 3100–3133. doi:10.1016/j.combustflame.2014.05.018
  • Raman, V., Fox, R.O., and Harvey, A.D. 2004. Hybrid finite-volume/transported PDF simulations of a partially premixed methane-air flame. Combust. Flame. 136, 327–350. doi:10.1016/j.combustflame.2003.10.012
  • Raman, V., and Pitsch, H. 2007. A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combustion Inst. 31, 1711–1719. doi:10.1016/j.proci.2006.07.152
  • Ren, Z.Y., and Pope, S.B. 2004. An investigation of the performance of turbulent mixing models. Combust. Flame. 136, 208–216. doi:10.1016/j.combustflame.2003.09.014
  • Ren, Z.Y., Subramaniam, S., and Pope, S.B. 2002. Implementation of the EMST mixing model [Online]. Available: http://tcg.mae.cornell.edu/emst
  • Richardson, E.S., and Chen, J.H. 2012. Application of PDF mixing models to premixed flames with differential diffusion. Combust. Flame. 159, 2398–2414. doi:10.1016/j.combustflame.2012.02.026
  • Richardson, E.S., Sankaran, R., Grout, R.W., and Chen, J.H. 2010. Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion. Combust. Flame. 157, 506–515. doi:10.1016/j.combustflame.2009.11.007
  • Rowinski, D.H., and Pope, S.B. 2011. PDF calculations of piloted premixed jet flames. Combust. Theor. Model. 15, 245–266. doi:10.1080/13647830.2010.535568
  • Rowinski, D.H., and Pope, S.B. 2013. Computational study of lean premixed turbulent flames using RANS-PDF and LES-PDF methods. Combust. Theor. Model. 17, 610–656. doi:10.1080/13647830.2013.789929
  • Sabel’nikov, V., and Soulard, O. 2006. White in time scalar advection model as a tool for solving joint composition PDF equations. Flow Turbul. Combust. 77, 333–357. doi:10.1007/s10494-006-9049-z
  • Sponfeldner, T., Boxx, I., Beyrau, F., Hardalupas, Y., Meier, W., and Taylor, A.M.K.P. 2015. On the alignment of fluid-dynamic principal strain-rates with the 3D flamelet-normal in a premixed turbulent V-flame. Proc. Combustion Inst. 35, 1269–1276. doi:10.1016/j.proci.2014.06.082
  • Stoellinger, M., and Heinz, S. 2010. Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame. Combust. Flame. 157, 1671–1685. doi:10.1016/j.combustflame.2010.01.015
  • Subramaniam, S., and Pope, S.B. 1998. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame. 115, 487–514. doi:10.1016/S0010-2180(98)00023-6
  • Subramaniam, S., and Pope, S.B. 1999. Comparison of mixing model performance for nonpremixed turbulent reactive flow. Combust. Flame. 117, 732–754. doi:10.1016/S0010-2180(98)00135-7
  • Swaminathan, N., and Bilger, R.W. 2001. Scalar dissipation, diffusion and dilatation in turbulent H-2-air premixed flames with complex chemistry. Combust. Theor. Model. 5, 429–446. doi:10.1088/1364-7830/5/3/310
  • Swaminathan, N., and Bray, K.N.C. 2005. Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame. 143, 549–565. doi:10.1016/j.combustflame.2005.08.020
  • Swaminathan, N., and Bray, K.N.C. 2011. Turbulent Premixed Flames, Cambridge University Press, New York
  • Tang, Q., Xu, J., and Pope, S.B. 2000. Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames. Proc. Combustion Inst. 28, 133–139. doi:10.1016/S0082-0784(00)80204-0
  • Taut, C., Correa, C., Deutschmann, O., Warnatz, J., Einecke, S., Schulz, C., and Wolfrum, J. 2000. Three-dimensional modeling with Monte Carlo-probability density function methods and laser diagnostics of the combustion in a two-stroke engine. Proc. Combustion Inst. 28, 1153–1159. doi:10.1016/S0082-0784(00)80325-2
  • Tirunagari, R.R., and Pope, S.B. 2016a. An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods. Combust. Flame. 166, 229–242. doi:10.1016/j.combustflame.2016.01.024
  • Tirunagari, R.R., and Pope, S.B. 2016b. LES/PDF for premixed combustion in the DNS limit. Combust. Theor. Model. 20, 834–865. doi:10.1080/13647830.2016.1188991
  • Tirunagari, R.R., and Pope, S.B. 2017. Characterization of extinction/reignition events in turbulent premixed counterflow flames using strain-rate analysis. Proc. Combustion Inst. 36, 1919–1927. doi:10.1016/j.proci.2016.07.019
  • Valino, L., and Dopazo, C. 1991. A binomial langevin model for turbulent mixing. Phys. Fluids a-Fluid Dyn. 3, 3034–3037. doi:10.1063/1.857847
  • Veynante, D., and Vervisch, L. 2002. Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266. doi:10.1016/S0360-1285(01)00017-X
  • Villermaux, J., and Devillon, J.C. 1972. Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique. Proceedings of the Second International Symposium on Chemical Reaction Engineering, Amsterdam. 1–13.
  • Wang, H., and Zhang, P. 2017. A unified view of pilot stabilized turbulent jet flames for model assessment across different combustion regimes. Proc. Combustion Inst. 36, 1693–1703. doi:10.1016/j.proci.2016.06.008
  • Wang, H., Zhou, H., Ren, Z., and Law, C.K. 2018. Transported PDF simulation of turbulent CH4/H2 flames under MILD conditions with particle-level sensitivity analysis. Proc. Combustion Inst. doi:10.1016/j.proci.2018.05.167
  • Xu, J., and Pope, S.B. 2000. PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame. 123, 281–307. doi:10.1016/S0010-2180(00)00155-3
  • Yang, Y., Wang, H., Pope, S.B., and Chen, J.H. 2013. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame. Proc. Combustion Inst. 34, 1241–1249. doi:10.1016/j.proci.2012.08.015
  • Zhang, Y.Z., Kung, E.H., and Haworth, D.C. 2005. A PDF method for multidimensional modeling of HCCI engine combustion: effects of turbulence/chemistry interactions on ignition timing and emissions. Proc. Combustion Inst. 30, 2763–2771. doi:10.1016/j.proci.2004.08.236
  • Zhao, X.-Y., Bhagatwala, A., Chen, J.H., Haworth, D.C., and Pope, S.B. 2016. An a priori DNS study of the shadow-position mixing model. Combust. Flame. 165, 223–245. doi:10.1016/j.combustflame.2015.12.009
  • Zhao, X.-Y., and Haworth, D.C. 2014. Transported PDF modeling of pulverized coal jet flames. Combust. Flame. 161, 1866–1882. doi:10.1016/j.combustflame.2013.12.024
  • Zhou, H., Li, S., Ren, Z., and Rowinski, D.H. 2017. Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis. Combust. Flame. 181, 136–148. doi:10.1016/j.combustflame.2017.03.011
  • Zhou, H., Ren, Z., Kuron, M., Lu, T., and Chen, J.H. 2018a. Investigation of reactive scalar mixing in transported PDF simulations of turbulent premixed methane-air Bunsen flames. Combust. Flame. under review.
  • Zhou, H., Yang, T., Ren, Z., and Rowinski, D.H. 2018b. LES/PDF simulations of a near-limit turbulent lean premixed flame. Combust. Flame. under review.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.