329
Views
21
CrossRef citations to date
0
Altmetric
Articles

Study on Coal Spontaneous Combustion Characteristics under Methane-Containing Atmosphere

, , , , &
Pages 1456-1472 | Received 19 Jul 2018, Accepted 29 Sep 2018, Published online: 10 Oct 2018

References

  • Ahmet, A., and Beamish, B. 2015. Reaction kinetics of coal oxidation at low temperatures. Fuel, 159, 412–417. doi:10.1016/j.fuel.2015.06.054
  • Buzek, F., and Lnenickova, Z. 2010. Temperature programmed desorption of coal gases – chemical and carbon isotope composition. Fuel, 89(7), 1514–1524. doi:10.1016/j.fuel.2009.09.020
  • Chelgani, S.C., and Hower, J.C. 2018. Relationships between noble metals as potential coal combustion products and conventional coal properties. Fuel, 226, 345–349. doi:10.1016/j.fuel.2018.04.041
  • Claudia, K., Zhang, J.Z., Tetzlaff, A., Dijk, P.V., Voigt, S., Mehl, H., and Wagner, W. 2007. Uncontrolled coal fires and their environmental impacts: investigating two arid mining regions in north-central china. Appl. Geography, 27(1), 42–62. doi:10.1016/j.apgeog.2006.09.007
  • Deng, J., Li, B., Xiao, Y., Ma, L., Wang, C.P., Wang, B.L., and Shu, C.M. 2017. Combustion properties of coal gangue using thermogravimetry-Fourier transform infrared spectroscopy. Appl. Thermal Eng., 116, 244–252. doi:10.1016/j.applthermaleng.2017.01.083
  • Deng, J., Ren, L.F., Ma, L., Lei, C.K., Wei, G.M., and Wang, W.F. 2018. Effect of oxygen concentration on low-temperature exothermic oxidation of pulverized coal. Thermochim. Acta, 667, 102–110. doi:10.1016/j.tca.2018.07.012
  • Deng, J., Zhao, J.Y., Zhang, Y.N., Huang, A.C., Liu, X.R., Zhai, X.W., and Wang, C.P. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process. Saf. Environ. Prot., 104, 218–224. doi:10.1016/j.psep.2016.09.007
  • Gülbin, G., Hoşgörmez, H., Özcan, D., Li, X., Liu, H.D., and Song, W.J. 2015. The properties of Çan basin coals (Çanakkale−turkey): spontaneous combustion and combustion by-products. Int. J. Coal Geol., 138, 1–15. doi:10.1016/j.coal.2014.12.004
  • He, X.Q., Liu, X.F., Nie, B.S., and Song, D.Z. 2017. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel, 206, 555–563. doi:10.1016/j.fuel.2017.05.101
  • Hu, X.C., Yang, S.Q., Liu, W.V., Zhou, X.H., Sun, J.W., and Yu, H. 2017. A methane emission control strategy in the initial mining range at a spontaneous combustion-prone longwall face: a case study in coal 15, shigang mine, china. J. Nat. Gas Sci. Eng., 38, 504–515. doi:10.1016/j.jngse.2017.01.007
  • Ibarra, J.V., Moliner, R., and Bonet, A.J. 1994. FT-I.R. investigation on char formation during the early stages of coal pyrolysis. Fuel, 73(6), 918–924. doi:10.1016/0016-2361(94)90287-9
  • Ide, S.T., and Orr, F.M., Jr. 2011. Comparison of methods to estimate the rate of CO2 emissions and coal consumption from a coal fire near Durango, CO. Int. J. Coal Geol., 86(1), 95–107. doi:10.1016/j.coal.2010.12.005
  • Ivonete, Á., Crnkovic, P.M., Luna, C.M.R., and Milioli, F.E. 2017. Use of a fluidized bed combustor and thermogravimetric analyzer for the study of coal ignition temperature. Appl. Thermal Eng., 114(1), 984–992. doi:10.1016/j.applthermaleng.2016.11.171
  • John, N.C., Day, S.J., Saghafi, A., and Williams, D.J. 2009. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int. J. Coal Geol., 78(2), 161–168. doi:10.1016/j.coal.2008.12.001
  • Juha, S., Auerkari, P., Heikkilä, A.M., Tuominen, R., Vela, I., Itkonen, J., Rinne, M., and Aaltonen, K. 2012. Risk and mitigation of self-heating and spontaneous combustion in underground coal storage. J. Loss Prev. . Industries, 25(3), 617–622. doi:10.1016/j.jlp.2012.01.006
  • Karacan, C.Ö., Ruiz, F.A., Cotè, M., and Phipps, S. 2011. Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol., 86(2), 121–156. doi:10.1016/j.coal.2011.02.009
  • Li, J.H., Li, Z.H., Yang, Y.L., Kong, B., and Wang, C.J. 2018a. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Process. Technol., 171, 350–360. doi:10.1016/j.fuproc.2017.09.027
  • Li, J.H., Li, Z.H., Yang, Y.L., and Wang, C.J. 2018b. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. Fuel, 233, 237–246. doi:10.1016/j.fuel.2018.06.039
  • Liotta, R., Brons, G., and Isaacs, J. 1983. Oxidative weathering of Illinois no.6 coal. Fuel, 6(7), 781–791. doi:10.1016/0016-2361(83)90028-5
  • Liu, L., and Zhou, F.B. 2010. A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. Int. J. Coal Geol., 82(1), 27–36. doi:10.1016/j.coal.2010.01.014
  • Liu, X.F., and Nie, B.S. 2016. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel, 182, 314–322. doi:10.1016/j.fuel.2016.05.110
  • Martínez, M., Márquez, G., Alejandre, F.J., Río, J.J.D., and Hurtado, A. 2014. Geochemical study of products associated with spontaneous oxidation of coal in the cerro pelado formation, Venezuela. J. . Am. Earth Sci., 27(2), 211–218. doi:10.1016/j.jsames.2008.12.001
  • Michalina, K.M., and Tomaszewicz, M. 2018. Comparison of the first stage of the thermal decomposition of Polish coals by diffuse reflectance infrared spectroscopy. J. Energy Inst., 91, 240–250. doi:10.1016/j.joei.2016.11.011
  • Neupane, B., Ju, Y.W., Silwal, B.R., Singh, P., and Huang, C. 2017. Structural investigations of Eocene coals from foreland basin of central Nepal Himalaya. Energ. Explor. Exploit., 35(6), 713–733. doi:10.1177/0144598717716283
  • Nimaje, D.S., and Tripathy, D.P. 2016. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel, 163, 139–147. doi:10.1016/j.fuel.2015.09.041
  • Qin, B.T., Li, L., Da, M., Lu, Y., Zhong, X.X., and Jia, Y.W. 2016. Control technology for the avoidance of the simultaneous occurrence of a methane explosion and spontaneous coal combustion in a coal mine: a case study. Process. Saf. Environ. Prot., 103, 203–211. doi:10.1016/j.psep.2016.07.005
  • Qin, Y.P., Liu, W., Yang, C., Fan, Z.Z., Wang, L.L., and Jia, G.W. 2012. Experimental study on oxygen consumption rate of residual coal in goaf. Saf. Sci., 50(4), 787–791. doi:10.1016/j.ssci.2011.08.033
  • Song, W.X., Yang, S.Q., Jiang, C.L., and Niu, J. 2012. Experimental research on the formation of CO during coal spontaneous combustion under the condition of methane-contained airflow. J. China Coal Soc., 37(8), 1320–1325. (In Chinese).
  • Stefan, W., Kuenzer, C., Kessels, W., and Wuttke, M.W. 2008. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires. Int. J. Coal Geol., 74(3), 175−184.
  • Wang, D.M., Xin, H.H., Qi, X.Y., Dou, G.L., Qi, G.S., and Ma, L.Y. 2016. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics. Combust. Flame., 163, 447–460. doi:10.1016/j.combustflame.2015.10.019
  • Wang, D.M., Zhong, X.X., Gu, J.J., and Qi, X.Y. 2010. Changes in active functional groups during low-temperature oxidation of coal. Mining Sci. Technol., 20(1), 35–40.
  • Wang, G., Xie, J., Xue, S., and Wang, H.Y. 2015. Laboratory study on low-temperature coal spontaneous combustion in the air of reduced oxygen and low methane concentration. Tehnicki Vjesnik, 22(5), 1319–1325.
  • Wessling, S., Kessels, W., Schmidt, M., and Krause, U. 2010. Investigating dynamic underground coal fires by means of numerical simulation. Geophys. J. R. Astron. Soc., 172(1), 439–454. doi:10.1111/j.1365-246X.2007.03568.x
  • Xia, T.Q., Zhou, F.B., Gao, F., Kang, J.H., Liu, J.S., and Wang, J.G. 2015. Simulation of coal self-heating processes in underground methane-rich coal seams. Int. J. Coal Geol., 141–142(s), 1–12. doi:10.1016/j.coal.2015.02.007
  • Xia, T.Q., Zhou, F.B., Wang, X.X., Zhang, Y.F., Li, Y.M., Kang, J.H., and Liu, J.S. 2016. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel, 182, 886–896. doi:10.1016/j.fuel.2016.05.090
  • Xiao, Y., Li, Q.W., Deng, J., Shu, C.M., and Wang, W. 2015. Experimental study on the corresponding relationship between the index gases and critical temperature for coal spontaneous combustion. J. Therm. Anal. Calorim., 127(1), 1–9.
  • Xiao, Y., Lü, H.F., Huang, A.C., Deng, J., and Shu, C.M. 2018. A new numerical method to predict the growth temperature of spontaneous combustion of 1/3 coking coal. Appl. Thermal Eng., 131, 221–229. doi:10.1016/j.applthermaleng.2017.12.007
  • Xie, J., Xue, S., Cheng, W.M., and Wang, G. 2011. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system. Int. J. Coal Geol., 85(1), 123–127. doi:10.1016/j.coal.2010.10.007
  • Xin, H.H., Wang, D.M., Qi, X.Y., Qi, G.S., and Dou, G.L. 2014. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Process. Technol., 118(2), 287–295. doi:10.1016/j.fuproc.2013.09.011
  • Yang, S.Q., Hu, X.C., Liu, W.V., Cai, J.W., and Zhou, X.H. 2018. Spontaneous combustion influenced by surface methane drainage and its prediction by rescaled range analysis. Int. J. Mining Sci. Technol., 28(2), 215–221. doi:10.1016/j.ijmst.2017.12.004
  • Zhang, Y.L., Wang, J.F., Xue, S., Wu, J.M., Chang, L.P., and Li, Z.F. 2016. Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR. Int. J. Coal Geol., 154–155(s), 155–164. doi:10.1016/j.coal.2016.01.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.