443
Views
10
CrossRef citations to date
0
Altmetric
Articles

Numerical Simulation of the Effects of Hydrogen Addition to Fuel on the Structure and Soot Formation of a Laminar Axisymmetric Coflow C2H4/(O2-CO2) Diffusion Flame

, , &
Pages 1743-1768 | Received 20 May 2018, Accepted 02 Oct 2018, Published online: 18 Oct 2018

References

  • Angrill, O., Geitlinger, H., Streibel, T., et al. 2000. Influence of exhaust gas recirculation on soot formation in diffusion flames[J]. Proc. Combustion Inst., 28(2), 2643–2649. doi:10.1016/S0082-0784(00)80683-9
  • Appel, J., Bockhorn, H., and Frenklach, M. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2, hydrocarbons. Combust. Flame, 121(1), 122–136. doi:10.1016/S0010-2180(99)00135-2
  • Bhardawaj, A., Habib, G., Kumar, A., Singh, S., and Nema, A.K. 2017. A review of ultrafine particle-related pollution during vehicular motion, health effects and control. J. Environ. Sci. Public Health, 1(4), 268–288. doi:10.26502/jesph
  • Du, D.X., Axelbaum, R.L., and Law, C.K. 1995. Soot formation in strained diffusion flames with gaseous additives. Combust. Flame., 102(1–2), 11–20. doi:10.1016/0010-2180(95)00043-6
  • Du, D.X., Axelbaum, R.L., and Law, K.C. 1990. The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Proc. Combust. Inst., 23, 1501–1507. doi:10.1016/S0082-0784(06)80419-4
  • Dworkin, S.B., Zhang, Q., Thomson, M.J., Slavinskaya, N.A., and Riedel, U. 2011. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust. Flame, 158, 1682–1695. doi:10.1016/j.combustflame.2011.01.013
  • Eaves, N.A., Thomson, M.J., and Dworkin, S.B. 2013. The effect of conjugate heat transfer on soot formation modeling at elevated pressures. Combust. Sci. Technol., 185(12), 1799–1819. doi:10.1080/00102202.2013.839554
  • Eaves, N.A., Zhang, Q., Liu, F., et al. 2016. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames ☆[J]. Comput. Phys. Commun., 207, 464–477. doi:10.1016/j.cpc.2016.06.016
  • Gersen, S., Anikin, N.B., Mokhov, A.V., and Levinsky, H.B. 2008. Ignition properties of methane/hydrogen mixtures in a rapid compression machine. Int. J. Hydrogen Energy, 33, 1957–1964. doi:10.1016/j.ijhydene.2008.01.017
  • Gu, M., Chu, H., and Liu, F. 2016. Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame[J]. Combust. Flame, 166, 216–228. doi:10.1016/j.combustflame.2016.01.023
  • Gülder, Ö.L., Snelling, D.R., and Sawchuk, R.A. 1996. Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames. Proc. Combust Inst., 26, 2351–2358. doi:10.1016/S0082-0784(96)80064-6
  • Guo, H., Liu, F., Smallwood, G.J., and Gülder, Ö.L. 2002. The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene-air diffusion flame. Combust. Theor. Model., 6, 173–187. doi:10.1088/1364-7830/6/2/301
  • Guo, H., Liu, F., Smallwood, G.J., and Gülder, Ö.L. 2004. A numerical investigation of thermal diffusion influence on soot formation in ethylene/air diffusion flames. Int. J. Comput. Fluid Dynamics, 18(2), 139–151. doi:10.1080/10618560310001634203
  • Guo, H., Liu, F., Smallwood, G.J., and Gülder, Ö.L. 2006. Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene-air diffusion flame. Combust. Flame, 145(1–2), 324–338. doi:10.1016/j.combustflame.2005.10.016
  • Guo, H., and Smallwood, G.J. 2008. A numerical study on the influence of CO2 addition on soot formation in an ethylene/air diffusion flame. Combust. Sci. Technol., 180(10–11), 1695–1708. doi:10.1080/00102200802258072
  • Guo, H., Smallwood, G.J., Liu, F., Ju, Y., and Gülder, Ö.L. 2005. The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc. Combust. Inst., 30, 303–311. doi:10.1016/j.proci.2004.08.177
  • Guo, H., Thomson, K.A., and Smallwood, G.J. 2009. On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame. Combust. Flame., 156(6), 1135–1142. doi:10.1016/j.combustflame.2009.01.006
  • Haynes, B., and Wagner, H. 1981. Soot formation. Prog. Energy Combust. Sci., 7, 229–273. doi:10.1016/0360-1285(81)90001-0
  • Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., and Miller, J.A.A. Fortran com- puter code package for the evaluation of gas-phase multicomponent transport properties, Sandia Report SAND86-8246, Sandia National Laboratories, 1986.
  • Kee, R.J., Rupley, F.M., and Miller, J.A. Chemkin-II: a Fortran chemical kinetics pack- age for the analysis of gas-phase chemical kinetics, Sandia Report SAND89-8009, Sandia National Laboratories, 1989.
  • Liu, F., Ai, Y., and Kong, W. 2014. Effect of hydrogen and helium addition to fuel on soot formation in an axisymmetric coflow laminar methane-air diffusion flame. Int. J. Hydrogen Energy, 39, 3936–3946. doi:10.1016/j.ijhydene.2013.12.151
  • Liu, F., Guo, H., Smallwood, G.J., and Gülder, Ö.L. 2001. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation. Combust. Flame, 125(1–2), 778–787. doi:10.1016/S0010-2180(00)00241-8
  • Liu, F., Guo, H., Smallwood, G.J., and Gülder, Ö.L. 2003. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combust. Theor. Model., 7, 301–315. doi:10.1088/1364-7830/7/2/305
  • Liu, F., He, X., Ma, X., Zhang, Q., Thomson, M.J., Guo, H., Smallwood, G.J., Shuai, S., and Wang, J. 2011. An experimental and numerical study of the effects of dimethyl ether addition to fuel on polycyclic aromatic hydrocarbon and soot formation in laminar coflow ethylene/air diffusion flames. Combust. Flame, 158, 547–563. doi:10.1016/j.combustflame.2010.10.005
  • Liu, F., Katataş, A.E., Gülder, Ö.L., and Gu, M. 2015. Numerical and experimental study of the influence of CO2 and N2 dilution on soot formation in laminar coflow C2H4/air diffusion flames at pressures between 5 and 20 atm. Combust. Flame, 162, 2231–2247. doi:10.1016/j.combustflame.2015.01.020
  • Liu, F., and Smallwood, G.J. 2004. An efficient approach for the implementation of the SNB based correlated-k method and its evaluation. J. Quant. Spectrosc. Radiat. Transfer, 84, 465–475. doi:10.1016/S0022-4073(03)00263-2
  • Oh, K.C., and Shin, H.D. 2006. The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames. Fuel, 85, 615. doi:10.1016/j.fuel.2005.08.018
  • Santoro, R.J., Yeh, T.T., Horvath, J.J., and Semerjian, H.G. 1987. Thee transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol., 53, 89–115. doi:10.1080/00102208708947022
  • Schug, K.P., Manheimer-Timnat, Y., Yaccarino, P., and Glassman, I. 1980. Sooting behavior of gaseous hydrocarbon diffusion flames and the influence of additives. Combust. Sci. Technol., 22, 235–250. doi:10.1080/00102208008952387
  • Service, R.F. 2008. Study fingers soot as a major player in global warming[J]. Science, 319(5871), 1745. doi:10.1126/science.319.5871.1745
  • Zhang, Q. Detailed modeling of soot formation/oxidation in laminar coflow diffusion flames[J]. School of Graduate Studies - Theses, 2010, 2–20. doi:10.1097/ANS.0b013e3181d1ec00
  • Zhang, Y., Liu, F., and Lou, C. 2018. Experimental and numerical investigations of soot formation in laminar coflow ethylene flames burning in O2/N2 and O2/CO2 atmospheres at different O2 mole fractions. Energy & Fuels, 32, 6252–6263. doi:10.1021/acs.energyfuels.7b04069

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.