247
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Symmetric and Nonsymmetric Flame Spread between Parallel Plates of Thick Combustible Solid

ORCID Icon, , &
Pages 2175-2193 | Received 31 Oct 2017, Accepted 07 Oct 2018, Published online: 25 Oct 2018

References

  • Brambilla, A., Schultze, M., Frouzakis, C.E., Mantzaras, J., Bombach, R., and Boulouchos, K. 2015. An experimental and numerical investigation of premixed syngas combustion dynamics in mesoscale channels with controlled wall temperature profiles. Proc. Combust. Inst., 35, 3429. doi:10.1016/j.proci.2014.06.131.
  • Chen, C-H. 1990. A Numerical Study of Flame Spread and Blowoff over a Thermally-Thin Solid Fuel in an Opposed Air Flow. Combust. Sci. Technol., 69, pp. 63–83. doi: 10.1080/00102209008951603.
  • Comas, B., and Pujol, T. 2013. Energy balance models of downward combustion of parallel thin solid fuels and comparison to experiments. Combust. Sci. Technol., 185, 1820. doi:10.1080/00102202.2013.839556.
  • Emmons, H.W., and Shen, T. 1971. Fire spread in paper arrays. Proc. Combust. Inst., 13, 917. doi:10.1016/S0082-0784(71)80092-9.
  • Fernández-Galisteo, D., Jiménez, C., Sánchez-Sanz, M., and Kurdyumov, V.N. 2014. The differential diffusion effect of the intermediate species on the stability of premixed flames propagating in microchannels. Combust. Theory Model., 18, 582.
  • Fernández-Galisteo, D., Jiménez, C., Sánchez-Sanz, M., and Kurdyumov, V.N. 2017. Effects of stoichiometry on premixed flames propagating in narrow channels: symmetry-breaking bifurcations. Combust. Theory Model., 21, 1050. doi:10.1080/13647830.2017.1333157.
  • Fernandez-Pello, A.C., Ray, S.R., and Glassman, I. 1981. Flame spread in an opposed forced flow: the effect of ambient oxygen concentration. Proc. Combust. Inst., 18, 579. doi:10.1016/S0082-0784(81)80063-X.
  • Fire Dynamics Simulator NIST, available from https://pages.nist.gov/fds-smv/ ( accessed on 5 January, 2017).
  • GitHub, available from <https://github.com/firemodels/fds/blob/master/Validation/FAA_Polymers/FDS_Input_Files/FAA_Polymers_PMMA.fds> (accessed on 2 January, 2017).
  • Hostikka, S., and McGrattan, K.B. 2001. Large eddy simulation of wood combustion. Proc. Ninth Int. Interflam Conf., 1, pp. 755–762.
  • Ito, A., and Kashiwagi, T. 1988. Temperature measurements in PMMA during downward flame spread in air using holographic interferometry. Proc. Combust. Inst., 21, 65. doi:10.1016/S0082-0784(88)80232-7.
  • Itoh, A., and Kurosaki, Y. 1985. Downward flame spread along several vertical, parallel sheets of paper. Combust. Flame, 60, 269. doi:10.1016/0010-2180(85)90032-X.
  • Kurdyumov, V.N. 2011. Lewis number effect on the propagation of premixed flames in narrow adiabatic channels: symmetric and non-symmetric flames and their linear stability analysis. Combust. Flame, 158, 1307. doi:10.1016/j.combustflame.2010.11.011.
  • Kurdyumov, V.N., and Jiménez, C. 2014. Propagation of symmetric and non-symmetric premixed flames in narrow channels: influence of conductive heat-losses. Combust. Flame, 161, 927. doi:10.1016/j.combustflame.2013.10.002.
  • Kurdyumov, V.N., Pizza, G., Frouzakis, C.E., and Mantzaras, J. 2009. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature. Combust. Flame, 156, 2190. doi:10.1016/j.combustflame.2009.08.001.
  • Kurosaki, Y., Ito, A., and Chiba, M. 1979. Downward flame spread along two vertical, parallel sheets of thin combustible solid. Proc. Combust. Inst., 17, 1211. doi:10.1016/S0082-0784(79)80115-0.
  • Kwon, J.W., Dembsey, N.A., and Lautenberger, C.W. 2007. Evaluation of FDS V.4: upward flame spread. Fire Technol., 43, 255. doi:10.1007/s10694-007-0020-x.
  • Liñan, A., and Williams, F.A. 1993. Fundamental Aspects of Combustion, Oxford University Press, New York. pp. 32–38.
  • Matsuoka, T., Murakami, S., Yamazaki, T., and Nakamura, Y. 2017. An appearance of asymmetrically spreading flames in narrow combustible channel. Trans. JSME, 83, 17. ( in Japanese).
  • McGrattan, K., McDermott, R., Hostikka, S., Floyd, J., and Overholt, K. 2016a. Fire dynamics simulator user’s guide. NIST Specical Publication, 1019, ( sixth edition).
  • McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., and Overholt, K. 2016b. Fire dynamics simulator technical reference guide volume1: mathematical model. NIST Special Publication, 1018, ( sixth edition).
  • Nakamura, Y., and Kashiwagi, T. 2005. Effects of sample orientation on nonpiloted ignition of thin poly(methyl methacrylate) sheet by a laser: 1. Theoretical prediction. Combust. Flame, 141, 149. doi:10.1016/j.combustflame.2004.12.014.
  • Nakamura, Y., Kashiwagi, T., McGrattan, K.B., and Baum, H.R. 2002. Enclosure effects on flame spread over solid fuels in microgravity. Combust. Flame, 130, 307. doi:10.1016/S0010-2180(02)00381-4.
  • Pizza, G., Frouzakis, C.E., and Mantzaras, J. 2012. Chaotic dynamics in premixed hydrogen/air channel flow combustion. Combust. Theory Model., 16, 275. doi:10.1080/13647830.2011.620174.
  • Pizza, G., Frouzakis, C.E., Mantzaras, J., Tomboulides, A.G., and Boulouchos, K. 2008a. Dynamics of premixed hydrogen/air flames in mesoscale channels. Combust. Flame, 155, 2. doi:10.1016/j.combustflame.2008.08.006.
  • Pizza, G., Frouzakis, C.E., Mantzaras, J., Tomboulides, A.G., and Boulouchos, K. 2008b. Dynamics of premixed hydrogen/air flames in microchannels. Combust. Flame, 152, 433. doi:10.1016/j.combustflame.2007.07.013.
  • Pizza, G., Frouzakis, C.E., Mantzaras, J., Tomboulides, A.G., and Boulouchos, K. 2010. Three-dimensional simulations of premixed hydrogen/air flames in microtubes. J. Fluid Mech., 658, 463. doi:10.1017/S0022112010001837.
  • Rakesh Ranga, H.R., Korobeinichev, O.P., Harish, A., Raghavan, V., Kumar, A., Gerasimov, I.E., Gonchikzhapov, M.B., Tereshchenko, A.G., Trubachev, S.A., and Shmakov, A.G. 2018. Investigation of the structure and spread rate of flames over PMMA slabs. Appl. Therm. Eng., 130, 477. doi:10.1016/j.applthermaleng.2017.11.041.
  • Shih, H.Y. 2009. Flame spread and interactions in an array of thin solids in low-speed concurrent flows. Combust. Theory Model., 13, 443. doi:10.1080/13647830902807314.
  • The Japan Society of Mechanical Engineers (Ed.). 1983. JSME Data Book: Thermophysical Properties of Fluids, The Japan Society of Mechanical Engineers (JSME), Tokyo.
  • Urban, D.L. 1995. Interactions between flames on parallel solid surfaces. Proc. 3rd International Microgravity Combustion Workshop, 233–238. https://ntrs.nasa.gov/search.jsp?R=19960008422
  • Wang, H.Y., and Chateil, B. 2007. Numerical simulation of wind-aided flame spread over horizontal surface of condensed fuel in a confined channel. Int. J. Eng. Performance-Based Fire Codes, 9, 65.
  • WIchman, I.S., Williams, F.A., and Glassman, I. 1982. Theoretical aspects of flame spread in an opposed flow over flat surfaces of solid fuels. Proc. Combust. Inst., 19, 835. doi:10.1016/S0082-0784(82)80259-2.
  • Williams, F.A. 2000. Progress in knowledge of flamelet structure and extinction. Prog. Energy Combust. Sci., 26, 657. doi:10.1016/S0360-1285(00)00012-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.