141
Views
9
CrossRef citations to date
0
Altmetric
Articles

Thermokinetic Behavior and Microcharacterization during the Spontaneous Combustion of 1/3 Coking Coal

, , , &
Pages 1769-1788 | Received 29 May 2018, Accepted 08 Oct 2018, Published online: 18 Oct 2018

References

  • Andrés, J.M., and Bona, M.T. 2006. ASTM clustering for improving coal analysis by near-infrared spectroscopy. Talanta, 70, 711–719. doi:10.1016/j.talanta.2006.05.034
  • Babiński, P., Łabojko, G., Kotyczka-Morańska, M., and Plis, A. 2013. Kinetics of coal and char oxycombustion studied by TG–FTIR. J. Therm. Anal. Calorim., 113, 371–378. doi:10.1007/s10973-013-3002-x
  • Baldwin, R.M., Voorhees, K.J., and Durfee, S.L. 1987. Relationship of coal characteristics to coal reactivity for direct hydrogenation liquefaction. Fuel Process. Technol., 15, 281–292. doi:10.1016/0378-3820(87)90051-8
  • Cheng, H., Liu, Q., Huang, M., Zhang, S., and Frost, R.L. 2013. Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite. Thermochim. Acta, 555, 1–6. doi:10.1016/j.tca.2012.12.025
  • Choi, H., Jo, W., Kim, S., Yoo, J., Chun, D., Rhim, Y., Lim, J., and Lee, S. 2014. Comparison of spontaneous combustion susceptibility of coal dried by different processes from low-rank coal. Korean J. Chem. Eng., 31, 2151–2156. doi:10.1007/s11814-014-0174-4
  • Cui, X., Zhang, X., Yang, M., Feng, Y., Gao, H., and Luo, W. 2013. Study on the structure and reactivity of COREX coal. J. Therm. Anal. Calorim., 113, 693–701. doi:10.1007/s10973-012-2782-8
  • Deng, J., Li, Q., Xiao, Y., and Wen, H. 2017a. The effect of oxygen concentration on the non-isothermal combustion of coal. Thermochim. Acta, 653, 106–115. doi:10.1016/j.tca.2017.04.009
  • Deng, J., Wang, K., Zhang, Y., and Yang, H. 2014. Study on the kinetics and reactivity at the ignition temperature of Jurassic coal in North Shaanxi. J. Therm. Anal. Calorim., 118, 417–423. doi:10.1007/s10973-014-3974-1
  • Deng, J., Xiao, Y., Li, Q., Lu, J., and Wen, H. 2015. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel, 157, 261–269. doi:10.1016/j.fuel.2015.04.063
  • Deng, J., Zhao, J.Y., Huang, A.C., Zhang, Y.N., Wang, C.P., and Shu, C.M. 2017b. Thermal behavior and microcharacterization analysis of second-oxidized coal. J. Therm. Anal. Calorim., 127, 439–448. doi:10.1007/s10973-016-5493-8
  • Fan, D., Zhu, Z., Na, Y., and Lu, Q. 2013. Thermogravimetric analysis of gasification reactivity of coal chars with steam and CO2 at moderate temperatures. J. Therm. Anal. Calorim., 113, 599–607. doi:10.1007/s10973-012-2838-9
  • Fu, C., Anantharaman, R., Jordal, K., and Gundersen, T. 2015. Thermal efficiency of coal-fired power plants: from theoretical to practical assessments. Energy Convers. Manage, 105, 530–544. doi:10.1016/j.enconman.2015.08.019
  • Gao, Z., Zheng, M., Zhang, D., and Zhang, W. 2016. Low temperature pyrolysis properties and kinetics of non-coking coal in Chinese western coals. J. Energy Inst., 89, 544–559. doi:10.1016/j.joei.2015.07.002
  • García-Torrent, J., Ramírez-Gómez, Á., Querol-Aragón, E., Grima-Olmedo, C., and Medic-Pejic, L. 2012. Determination of the risk of self-ignition of coals and biomass materials. J. Hazard. Mater., 213–214, 230–235. doi:10.1016/j.jhazmat.2012.01.086
  • Geng, W., Nakajima, T., Takanashi, H., and Ohki, A. 2009. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel, 88, 139–144. doi:10.1016/j.fuel.2008.07.027
  • Jo, W., Choi, H., Kim, S., Yoo, J., Chun, D., Rhim, Y., Lim, J., and Lee, S. 2014. Changes in spontaneous combustion characteristics of low-rank coal through pre-oxidation at low temperatures. Korean J. Chem. Eng., 32, 255–260. doi:10.1007/s11814-014-0228-7
  • Kök, M.V. 2005. Temperature-controlled combustion and kinetics of different rank coal samples. J. Therm. Anal. Calorim., 79, 175–180. doi:10.1007/s10973-004-0581-6
  • Kök, M.V. 2008. Recent developments in the application of thermal analysis techniques in fossil fuels. J. Therm. Anal. Calorim., 91, 763–773. doi:10.1007/s10973-006-8282-y
  • Li, B., Chen, G., Zhang, H., and Sheng, C. 2014. Development of non-isothermal TG–DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel, 118, 385–391. doi:10.1016/j.fuel.2013.11.011
  • Li, J., Li, Z., and Yang, Y. 2018. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal. Fuel, 233, 237–246. doi:10.1016/j.fuel.2018.06.039
  • Lin, Y., Li, Q., Ji, K., Li, X., Yu, Y., Zhang, H., et al. 2014. Thermogravimetric analysis of pyrolysis kinetics of Shenmu bituminous coal. React. Kinet. Mech. Cat., 113, 269–279. doi:10.1007/s11144-014-0731-1
  • Meriste, T., Yörük, C.R., Trikkel, A., Kaljuvee, T., and Kuusik, R. 2013. TG–FTIR analysis of oxidation kinetics of some solid fuels under oxy-fuel conditions. J. Therm. Anal. Calorim., 114, 483–489. doi:10.1007/s10973-013-3063-x
  • Mohalik, N.K., Lester, E., Lowndes, I.S., and Singh, V.K. 2016. Estimation of greenhouse gas emissions from spontaneous combustion/fire of coal in opencast mines–indian context. Carbon Manag., 7, s. doi:10.1080/17583004.2016.1249216
  • Monnet, A., Percebois, J., and Gabriel, S. 2015. Assessing the potential production of uranium from coal-ash milling in the long term. Resour. Policy, 45, 173–182. doi:10.1016/j.resourpol.2015.04.005
  • Mothé, C.G., and Miranda, I.C.D. 2013. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods. J. Therm. Anal. Calorim., 113, 497–505. doi:10.1007/s10973-013-3163-7
  • Sahu, H.B., Padhee, S., and Mahapatra, S.S. 2011. Prediction of spontaneous heating susceptibility of Indian coals using fuzzy logic and artificial neural network models. Expert Syst. Appl., 38, 2271–2282. doi:10.1016/j.eswa.2010.08.015
  • Scaccia, S. 2013. TG-FTIR and kinetics of devolatilization of Sulcis coal. J. Anal. Appl. Pyrolysis, 104, 95–102. doi:10.1016/j.jaap.2013.09.002
  • Shu, X., Xu, J., Xu, J., Ge, L., and Chen, D. 1996. Study of spontaneous combustion coals by GC and GC-MS. Fresenius J. Anal. Chem., 355, s.
  • Smith, K.L., Smoot, L.D., Fletcher, T.H., and Pugmire, R.J. 1994. The Structure and Reaction Processes of Coal, Springer-Verlag US, New York, NY, USA.
  • Song, Z., and Kuenzer, C. 2014. Coal fires in China over the last decade: a comprehensive review. Int. J. Coal Geol., 133, 72–99. doi:10.1016/j.coal.2014.09.004
  • Tahmasebi, A., Yu, J., Han, Y., Yin, F., Bhattacharya, S., and Stokie, D. 2012. Study of chemical structure changes of Chinese lignite upon drying in superheated steam, microwave, and hot air. Energy Fuels, 26, 3651–3660. doi:10.1021/ef300559b
  • Wang, C., Yang, Y., Tsai, Y.T., Deng, J., and Shu, C.M. 2016. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. J. Therm. Anal. Calorim., 126, 1591–1602. doi:10.1007/s10973-016-5685-2
  • Wang, H., Dlugogorski, B.Z., and Kennedy, E.M. 2003. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci., 29, 487–513. doi:10.1016/S0360-1285(03)00042-X
  • Xiao, Y., Lü, H.F., Huang, A.C., Deng, J., and Shu, C.M. 2018a. A new numerical method to predict the growth temperature of spontaneous combustion of 1/3 coking coal. Appl. Therm. Eng., 131, 221–229. doi:10.1016/j.applthermaleng.2017.12.007
  • Xiao, Y., Ren, S.J., Deng, J., and Shu, C.M. 2018b. Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion. Fuel, 227, 325–333. doi:10.1016/j.fuel.2018.04.070
  • Yuan, Z., Wu, L., Yuan, Z., and Li, H. 2017. Shape optimization of welded plate heat exchangers based on grey correlation theory. Appl. Therm. Eng., 123, 761–769. doi:10.1016/j.applthermaleng.2017.05.005
  • Zarrouk, S.J., and O’Sullivan, M.J. 2006. Self-heating of coal: the diminishing reaction rate. Chem. Eng. J., 119, 83–92. doi:10.1016/j.cej.2006.03.007
  • Zhang, H., Zhang, B., and Bi, J. 2015a. More efforts, more benefits: air pollutant control of coal-fired power plants in China. Energy, 80, 1–9. doi:10.1016/j.energy.2014.11.029
  • Zhang, Y., Guo, Y., Cheng, F., Yan, K., and Cao, Y. 2015b. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochim. Acta, 614, 137–148. doi:10.1016/j.tca.2015.06.018
  • Zhang, Y., Li, Y., Huang, Y., Li, S., and Wang, W. 2017. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology. J. Therm. Anal. Calorim., 131, 1–12.
  • Zhang, Z., Wang, C., and Yan, K. 2015c. Adsorption of collectors on model surface of wiser bituminous coal: a molecular dynamics simulation study. Miner. Eng., 79, 31–39. doi:10.1016/j.mineng.2015.05.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.