877
Views
21
CrossRef citations to date
0
Altmetric
Articles

Experimental Study and a Short Kinetic Model for High-Temperature Oxidation of Methyl Methacrylate

, , , , , & ORCID Icon show all
Pages 1789-1814 | Received 25 May 2018, Accepted 09 Oct 2018, Published online: 18 Nov 2018

References

  • Akbar Ali, M., and Violi, A. 2013. Reaction pathways for the thermal decomposition of methyl butanoate. J. Org. Chem., 7812, 5898–5908.doi:10.1021/jo400569d.
  • Alekseev, V.A., Naucler, J.D., Christensen, M., Nilsson, E.J., Volkov, E.N., de Goey, L.P.H., and Konnov, A.A. 2016. Experimental uncertainties of the heat flux method for measuring burning velocities. Combustion Sci. Technol., 1886, 853–894.doi:10.1080/00102202.2015.1125348.
  • Barths, H., Pitsch, H., and Peters, N. 1999. 3D simulation of di diesel combustion and pollutant formation using a two-component reference fuel. Oil Gas Sci. Technol., 542, 233–244.doi:10.2516/ogst:1999020.
  • Blanksby, S.J., and Ellison, G.B. 2003. Bond dissociation energies of organic molecules. Acc. Chem. Res., 364, 255–263.doi:10.1021/ar020230d.
  • Cool, T.A., Nakajima, K., Taatjes, C.A., McIlroy, A., Westmoreland, P.R., Law, M.E., and Morel, A. 2005. Studies of a fuel-rich propane flame with photoionization mass spectrometry. Proc. Combustion Inst., 301, 1681–1688.doi:10.1016/j.proci.2004.08.103.
  • Dmitriev, A., Knyazkov, D., Bolshova, T., Tereshchenko, A., Paletsky, A., Shmakov, A., and Ko- Robeinichev, O. 2015a. Structure of CH4/O2/Ar flames at elevated pressures studied by flame sampling molecular beam mass spectrometry and numerical simulation. Combust Flame, 16210, 3946–3959.doi:10.1016/j.combustflame.2015.07.032.
  • Dmitriev, A.M., Knyazkov, D.A., Bolshova, T.A., Shmakov, A.G., and Korobeinichev, O.P. 2015b. The effect of methyl pentanoate addition on the structure of premixed fuel-rich n-heptane/toluene flame at atmospheric pressure. Combust Flame, 1625, 1964–1975.doi:10.1016/j.combustflame.2014.12.015.
  • Es-Sebbar, E.-T., Khaled, F., Elwardany, A., and Farooq, A. 2016. Rate coefficients of the reaction of OH with allene and propyne at high temperatures. J. Phys. Chem., 12041, 7998–8005.doi:10.1021/acs.jpca.6b04387.
  • Farooq, A., Davidson, D.F., Hanson, R.K., and Westbrook, C.K. 2014. A comparative study of the chemical kinetics of methyl and ethyl propanoate. Fuel, 134, 26–38.doi:10.1016/j.fuel.2014.05.035.
  • Fenard, Y., Dayma, G., Halter, F., Foucher, F., Serinyel, Z., and Dagaut, P. 2015. Experimental and modeling study of the oxidation of 1-butene and cis-2-butene in a jet-stirred reactor and a combustion vessel. Energy & Fuels, 292, 1107–1118.doi:10.1021/ef502732c.
  • Fisher, E.M., Pitz, W.J., Curran, H.J., and Westbrook, C.K. 2000. Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proc Combust Inst, 282, 1579–1586.doi:10.1016/S0082-0784(00)80555-X.
  • Gaïl, S., Sarathy, S., Thomson, M., Diévart, P., and Dagaut, P. 2008. Experimental and chemical kinetic modeling study of small methyl esters oxidation: methyl (e)-2-butenoate and methyl butanoate. Combust Flame, 1554, 635–650.doi:10.1016/j.combustflame.2008.04.007.
  • Gerasimov, I.E., Knyazkov, D.A., Yakimov, S.A., Bolshova, T.A., Shmakov, A.G., and Korobeinichev, O.P. 2012. Structure of atmospheric-pressure fuel-rich premixed ethylene flame with and without ethanol. Combust Flame, 1595, 1840–1850.doi:10.1016/j.combustflame.2011.12.022.
  • Gupta, D., and Antony, B. 2014. Electron impact ionization of cycloalkanes, aldehydes, and ketones. J Chem Phys, 1415, 054303.doi:10.1063/1.4891472.
  • Haag, S. (2001). Alternative geometry hybrid rockets for spacecraft orbit transfer. Ph.D. thesis, Surrey Space Centre.
  • Harper, C.A., ed. 1957. Modern Plastics Handbook, McGraw-Hill, Lutherville, Maryland.
  • Huynh, L.K., and Violi, A. 2008. Thermal decomposition of methyl butanoate: Ab initio study of a biodiesel fuel surrogate. J. Org. Chem., 731, 94–101.doi:10.1021/jo701824n.
  • Khaled, F., Giri, B.R., and Farooq, A. 2017. A high-temperature shock tube kinetic study for the branching ratios of isobutene+ OH reaction. Proc. Combustion Inst., 361, 265–272.doi:10.1016/j.proci.2016.07.107.
  • Kim, Y.K., Irikura, K.K., Rudd, M.E., Ali, M.A., Stone, P.M., Coursey, J.S., Dragoset, R.A., Kishore, A.R., Olsen, K.J., and Sansonetti, A.M. (2004). Electron-impact ionization cross section for ionization and excitation database (version 3.0). http://physics.nist. gov/ionxsec.
  • Knyazkov, D., Dmitriev, A., Bolshova, T., Shvartsberg, V., Shmakov, A., and Korobeinichev, O. 2017a. Structure of premixed H2/O2/Ar flames at 1–5 atm studied by molecular beam mass spectrometry and numerical simulation. Proc. Combustion Inst., 361, 1233–1240.doi:10.1016/j.proci.2016.07.109.
  • Knyazkov, D.A., Dmitriev, A.M., Shvartsberg, V.M., Osipova, K.N., Shmakov, A.G., and Korobeinichev, O.P. 2017b. Study of the chemical structure of laminar premixed H2/CH4/C3H8/O2/Ar flames at 1–5 atm. Energy & Fuels, 3110, 11377–11390.doi:10.1021/acs.energyfuels.7b01597.
  • Knyazkov, D.A., Slavinskaya, N.A., Dmitriev, A.M., Shmakov, A.G., Korobeinichev, O.P., and Riedel, U. 2016. Structure of an n-heptane/toluene flame: molecular beam mass spectrometry and computer simulation investigations. Combust. Explos. Shock Waves, 522, 142–154.doi:10.1134/S0010508216020039.
  • Lin, Z., Wang, T., Han, D., Han, X., Li, S., Li, Y., and Tian, Z. 2009. Study of combustion intermediates in fuel-rich methyl methacrylate flame with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Communications Mass. Spectrometry, 231, 85–92.doi:10.1002/rcm.v23:1.
  • Luche, J., Rogaume, T., Richard, F., and Guillaume, E. 2011. Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter. Fire Saf. J., 467, 451–461.doi:10.1016/j.firesaf.2011.07.005.
  • Mendes, J., Zhou, C.-W., and Curran, H.J. 2014. Theoretical study of the rate constants for the hydrogen atom abstraction reactions of esters with OH∗ radicals. J. Phys. Chem., 11827, 4889–4899.doi:10.1021/jp5029596.
  • Mueller, M.E., and Pitsch, H. 2013. Large eddy simulation of soot evolution in an aircraft combustor. Phys. Fluids, 2511, 110812.doi:10.1063/1.4819347.
  • Narayanaswamy, K., Pepiot, P., and Pitsch, H. 2014. A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combust. Flame, 1614, 866–884.doi:10.1016/j.combustflame.2013.10.012.
  • Narayanaswamy, K., Pitsch, H., and Pepiot, P. 2015. A chemical mechanism for low to high temperature oxidation of methylcyclohexane as a component of transportation fuel surrogates. Combust. Flame, 1624, 1193–1213.doi:10.1016/j.combustflame.2014.10.013.
  • Narayanaswamy, K., Pitsch, H., and Pepiot, P. 2016. A component library framework for deriving kinetic mechanisms for multi-component fuel surrogates: application for jet fuel surrogates. Combust Flame, 165, 288–309.doi:10.1016/j.combustflame.2015.12.013.
  • Pepiot-Desjardins, P., 2008. Automatic strategies to model transportation fuel surrogates, Ph.D. thesis, Stanford University, Department of Mechanical Engineering .
  • Pepiot-Desjardins, P., and Pitsch, H. 2008. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust Flame, 1541, 67–81.doi:10.1016/j.combustflame.2007.10.020.
  • Pitsch, H., and Bollig, M. 2015. Flamemaster V3. 3.10, a C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations (2015).
  • Rhodes, B.T., and Quintiere, J.G. 1996. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Saf. J., 263, 221–240.doi:10.1016/S0379-7112(96)00025-2.
  • Seshadri, K., and Williams, F. 1978. Structure and extinction of counterflow diffusion flames above condensed fuels: comparison between poly (methyl methacrylate) and its liquid monomer, both burning in nitrogen–air mixtures. J. Polymer Sci. . A: Polymer Chem., 167, 1755–1778.
  • Struckmeier, U., Oßwald, P., Kasper, T., Böhling, L., Heusing, M., Köhler, M., Brockhinke, A., and Kohse-Höinghaus, K. 2009. Sampling probe influences on temperature and species concentrations in molecular beam mass spectroscopic investigations of flat premixed low-pressure flames. Zeitschrift für Physikalische Chemie, 2234–5, 503–537.doi:10.1524/zpch.2009.6049.
  • Vovelle, C., Delfau, J.-L., Reuillon, M., Bransier, J., and Laraqui, N. 1987. Experimental and numerical study of the thermal degradation of PMMA. Combustion Sci. Technol., 532–3, 187–201.doi:10.1080/00102208708947026.
  • Wang, Q.-D., Wang, X.-J., and Kang, G.-J. 2014. An application of the reaction class transition state theory to the kinetics of hydrogen abstraction reactions of hydrogen with methyl esters at the methoxy group. Computational Theor. Chem., 1027, 103–111.doi:10.1016/j.comptc.2013.11.009.
  • Wang, Q.-D., and Zhang, W. 2015. Influence of the double bond on the hydrogen abstraction reactions of methyl esters with hydrogen radical: an Ab initio and chemical kinetic study. RSC Adv, 584, 68314–68325.doi:10.1039/C5RA14880D.
  • Wang, T., Li, S., Lin, Z., Han, D., and Han, X. 2008. Experimental study of laminar lean premixed methylmethacrylate/oxygen/argon flame at low pressure. J. Phys. Chem., 1126, 1219–1227.doi:10.1021/jp709927j.
  • Yang, B., Westbrook, C.K., Cool, T.A., Hansen, N., and Kohse-Höinghaus, K. 2011. Fuel- specific influences on the composition of reaction intermediates in premixed flames of three C5H10O2 ester isomers. Phys. Chem. Chem. Phys., 1315, 6901–6913.doi:10.1039/c0cp02065f.
  • Yang, B., Westbrook, C.K., Cool, T.A., Hansen, N., and Kohse-Höinghaus, K. 2013. Photoionization mass spectrometry and modeling study of premixed flames of three unsaturated C5H8O2 esters. Proc. Combustion Inst., 341, 443–451.doi:10.1016/j.proci.2012.05.034.
  • Yasunaga, K., Kuraguchi, Y., Ikeuchi, R., Masaoka, H., Takahashi, O., Koike, T., and Hidaka, Y. 2009. Shock tube and modeling study of isobutene pyrolysis and oxidation. Proc. Combustion Inst., 321, 453–460.doi:10.1016/j.proci.2008.06.144.
  • Zeng, W., Li, S., and Chow, W. 2002. Review on chemical reactions of burning poly (methyl methacrylate) PMMA. J. Fire Sci., 205, 401–433.doi:10.1177/0734904102020005482.
  • Zhang, L., Chen, Q., and Zhang, P. 2015. A theoretical kinetics study of the reactions of methylbutanoate with hydrogen and hydroxyl radicals. Proc. Combustion Inst., 351, 481–489.doi:10.1016/j.proci.2014.05.117.
  • Zhou, C.W., Li, Y., O’Connor, E., Somers, K.P., Thion, S., Keesee, C., Mathieu, O., Petersen, H.E.L., DeVerter, T.A., and Oehlschlaeger, M.A. 2016. A comprehensive experimental and modeling study of isobutene oxidation. Combust Flame, 167, 353–379.doi:10.1016/j.combustflame.2016.01.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.