551
Views
1
CrossRef citations to date
0
Altmetric
Articles

Large Eddy Simulation of Bluff-Body Flame Approaching Blow-Off: A Sensitivity Study

, , , ORCID Icon, , , & show all
Pages 1815-1842 | Received 06 Jun 2018, Accepted 10 Oct 2018, Published online: 30 Oct 2018

References

  • Bai, X.-S., and Fuchs, L. 1994. Modelling of turbulent reacting flows past a bluff body: assessment of accuracy and efficiency. Comput. Fluids, 23(3), 507–521. doi:10.1016/0045-7930(94)90016-7
  • Balachandran, R., Ayoola, B.O., Kaminski, C.F., Dowling, A.P., and Mastorakos, E. oct 2005. Experimental investigation of the non linear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame, 143(1–2), 37–55. doi:10.1016/j.combustflame.2005.04.009
  • Boger, M., Veynante, D., Boughanem, H., and Trouvé, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. (Int.) Combust., 27(1), 917–925. doi:10.1016/S0082-0784(98)80489-X
  • Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., and Bérat, C. 2008. LES of an ignition sequence in a gas turbine engine. Combust. Flame, 154(1–2), 2–22. doi:10.1016/j.combustflame.2008.02.006
  • Bulat, G., Jones, W., and Marquis, A. 2013. Large Eddy simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method. Proc. Combustion Inst., 34(2), 3155–3164. doi:10.1016/j.proci.2012.07.031
  • Butler, T.D., and O’Rourke, P.J. 1977. A numerical method for two dimensional unsteady reacting flows. Symp. (Int.) Combust., 16(1), 1503–1515. doi:10.1016/S0082-0784(77)80432-3
  • Cant, R., and Mastorakos, E. 2008. An Introduction to Turbulent Reacting Flows, Imperial College Press.https://books.google.co.uk/books?id=Y0clCwgcpZYC
  • Celik, I.B., Cehreli, Z.N., and Yavuz, I. 2005. Index of resolution quality for large eddy simulations. J. Fluids Eng. Transactions of the ASME, 127(5), 949–958. doi:10.1115/1.1990201
  • Chaudhuri, S., and Cetegen, B.M. 2009. Blowoff characteristics of bluff-body stabilized conical premixed flames in a duct with upstream spatial mixture gradients and velocity oscillations. Combust. Sci. Technol., 181(4), 555–569. doi:10.1080/00102200802631278
  • Chaudhuri, S., Kostka, S., Renfro, M.W., and Cetegen, B.M. 2010. Blowoff dynamics of bluff body stabilized turbulent premixed flames. Combust. Flame, 157(4), 790–802. doi:10.1016/j.combustflame.2009.10.020
  • Chaudhuri, S., Kostka, S., Renfro, M.W., and Cetegen, B.M. 2012. Blowoff mechanism of harmonically forced bluff body stabilized turbulent premixed flames. Combust. Flame, 159(2), 638–640. doi:10.1016/j.combustflame.2011.08.005
  • Chaudhuri, S., Kostka, S., Tuttle, S.G., Renfro, M.W., and Cetegen, B.M. 2011. Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustor. Combust. Flame, 158(7), 1358–1371. doi:10.1016/j.combustflame.2010.11.012
  • CHEMKIN, 2013. CHEMKIN 10131, reaction design: San Diego. CHEMKIN-PRO, 2013. CHEMKIN-PRO 15131, Reaction Design: San Diego.
  • Chomiak, J., and Karlsson, A. 1996. Flame liftoff in diesel sprays. Symp. (Int.) Combust., 26(2), 2557–2564. doi:10.1016/S0082-0784(96)80088-9
  • Chowdhury, B., and Cetegen, B.M. 2018. Effects of free stream flow turbulence on blowoff characteristics of bluff-body stabilized premixed flames. Combust. Flame, 190, 302–316. doi:10.1016/j.combustflame.2017.12.002
  • Colucci, P.J., Jaberi, F.A., Givi, P., and Pope, S.B. 1998. Filtered density function for large Eddy simulation of turbulent reacting flows. Phys. Fluids, 10(2), 499–515. doi:10.1063/1.869537
  • Dawson, J.R., Gordon, R.L., Kariuki, J., Mastorakos, E., Masri, A.R., and Juddoo, M. 2011. Visualization of blow-off events in bluff-body stabilized turbulent premixed flames. Proc. Combustion Inst., 33(1), 1559–1566. doi:10.1016/j.proci.2010.05.044
  • Dopazo, C. 1975. Probability density function approach for a turbulent axisymmetric heated jet – centerline evolution. Phys. Fluids, 18, 397–404. doi:10.1063/1.861163
  • Duwig, C., and Fuchs, L. 2008. Large Eddy simulation of a H2/N2 lifted flame in a vitiated co-flow. Combust. Sci. Technol., 180(3), 453–480. doi:10.1080/00102200701741327
  • Duwig, C., Nogenmyr, K.-J., Chan, C.-K., and Dunn, M.J. 2011. Large Eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theor. Model., 15(4), 537–568. doi:10.1080/13647830.2010.548531
  • Eberle, C., Gerlinger, P., Geigle, K.P., and Aigner, M. 2018. Toward finite-rate chemistry large-eddy simulations of sooting swirl flames. Combust. Sci. Technol., 190(7), 1–24. doi:10.1080/00102202.2018.1443444
  • Edwards, J.R., Boles, J.A., and Baurle, R.A. 2012. Large-Eddy/Reynolds-averaged Navier-Stokes simulation of a supersonic reacting wall jet. Combust. Flame, 159(3), 1127–1138. doi:10.1016/j.combustflame.2011.10.009
  • Erickson, R.R., and Soteriou, M.C. 2011. The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames. Combust. Flame, 158(12), 2441–2457. doi:10.1016/j.combustflame.2011.05.006
  • Farrace, D., Chung, K., Bolla, M., Wright, Y.M., Boulouchos, K., and Mastorakos, E. 2018. A LES-CMC formulation for premixed flames including differential diffusion. Combust. Theor. Model., 22(3), 411–431. doi:10.1080/13647830.2017.1398351
  • Farrace, D., Chung, K., Pandurangi, S.S., Wright, Y.M., Boulouchos, K., and Swaminathan, N. 2017. Unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off. Proc. Combunstion Inst., 36, 1977–1985. doi:10.1016/j.proci.2016.07.028
  • Fiorina, B., Veynante, D., and Candel, S. 2015. Modeling combustion chemistry in large eddy simulation of turbulent flames. Flow, Turbul. Combust., 94(1), 3–42. doi:10.1007/s10494-014-9579-8
  • Fureby, C., 2007. Comparison of flamelet and finite rate chemistry LES for premixed turbulent combustion. 45th AIAA Aerospace Science Meeting and Exhibit 24, 1–16.
  • Fureby, C. 2012. A comparative study of flamelet and finite rate chemistry LES for a swirl stabilized flame. J. Eng. Gas Turbines Power, 134(4). doi:10.1115/1.4004718
  • Fureby, C., and Löfström, C. 1994. Large-Eddy simulations of bluff body stabilized flames. Symp. (Int.) Combust., 25(1), 1257–1264. doi:10.1016/S0082-0784(06)80766-6
  • Gao, F., O’Brien, E.E., and O‘Brien, E.E. 1993. A large-Eddy simulation scheme for turbulent reacting flows. Phys. Fluids A: Fluid Dyn., 5(6), 1282–1284. doi:10.1063/1.858617
  • Givi, P. 1989. Model-free simulations of turbulent reactive flows. Prog. Energy Combustion Sci., 15(1), 1–107. doi:10.1016/0360-1285(89)90006-3
  • Goldin, G., Ren, Z., and Zahirovic, S. 2009. A cell agglomeration algorithm for accelerating detailed chemistry in CFD. Combust. Theor. Model., 13, 721–739. doi:10.1080/13647830903154542
  • Grinstein, F.F., and Kailasanath, K. 1995. Three-dimensional numerical simulations of unsteady reactive square jets. Combust. Flame, 101(1–2), 192. doi:10.1016/0010-2180(95)00062-B
  • Hawkes, E.R., and Cant, R.S. 2001. Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame, 126(3), 1617–1629. doi:10.1016/S0010-2180(01)00273-5
  • Haworth, D.C. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combustion Sci., 36, 168–259. doi:10.1016/j.pecs.2009.09.003
  • Hodzic, E., Alenius, E., Duwig, C., Szasz, R.S., and Fuchs, L. 2017a. A large Eddy simulation study of bluff body flame dynamics approaching blow-off. Combust. Sci. Technol., 189(7), 1107–1137. doi:10.1080/00102202.2016.1275592
  • Hodzic, E., Duwig, C., Alenius, E., Szász, R., Fuchs, L., and Krüger, O., 2013. Large Eddy simulation of lean blow off. In: 21st AIAA Computational Fluid Dynamics Conference, San Diego, USA.
  • Hodzic, E., Jangi, M., Szasz, R.-Z., and Bai, X.-S. 2017b. Large Eddy simulation of bluff body flames close to blow-off using an Eulerian stochastic field method. Combust. Flame, 181, 1–15. doi:10.1016/j.combustflame.2017.03.010
  • Hodzic, E., Yu, S., Subash, A.A., Liu, X., Liu, X., Szasz, R.-Z., Bai, X.-S., Li, Z., and Alden, M., 2018. Numerical and experimental investigation of the CeCOST Swirl Burner. In: Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Lillestrom, Norway, pp. 1–12.
  • Jaberi, F.A., Colucci, P.J., James, S., Givi, P., and Pope, S.B. 1999. Filtered mass density function for large-Eddy simulation of turbulent reacting flows. J. Fluid Mech., 401, 85–121. doi:10.1017/S0022112099006643
  • Jangi, M., Altarawneh, M., and Dlugogorski, B.Z. 2016. Large-Eddy simulation of methanol pool fires using an accelerated stochastic fields method. Combust. Flame, 173, 89–98. doi:10.1016/j.combustflame.2016.08.017
  • Jangi, M., and Bai, X.-S. 2012. Multidimensional chemistry coordinate mapping approach for combustion modelling with finite-rate chemistry. Combust. Theor. Model., 16(6), 1109–1132. doi:10.1080/13647830.2012.713518
  • Jangi, M., Lucchini, T., D’Errico, G., and Bai, X.S. 2013a. Effects of EGR on the structure and emissions of diesel combustion. Proc. Combustion Inst., 34(2), 3091–3098. doi:10.1016/j.proci.2012.06.093
  • Jangi, M., Lucchini, T., Gong, C., and Bai, X.-S. 2015. Effects of fuel cetane number on the structure of diesel spray combustion: an accelerated Eulerian stochastic fields method. Combust. Theor. Model., 19(5), 549–567. doi:10.1080/13647830.2015.1057234
  • Jangi, M., Yu, R., and Bai, X.S. 2011. A multi-zone chemistry mapping approach for direct numerical simulation of auto-ignition and flame propagation in a constant volume enclosure. Combust. Theor. Model., 16(2), 221–249. doi:10.1080/13647830.2011.608858
  • Jangi, M., Yu, R., and Bai, X.S. 2013b. Development of chemistry coordinate mapping approach for turbulent partially premixed combustion. Flow, Turbul. Combust., 90(2), 285–299. doi:10.1007/s10494-012-9412-1
  • Jones, W.P., and Kakhi, M. 1998. PDF modeling of finite-rate chemistry effects in turbulent nonpremixed jet flames. Combust. Flame, 115(1–2), 210–229. doi:10.1016/S0010-2180(98)00002-9
  • Jones, W.P., and Lindstedt, R.P. 1988. Global reaction schemes for hydrocarbon combustion. Combust. Flame, 73(3), 233–249. doi:10.1016/0010-2180(88)90021-1
  • Jones, W.P., Marquis, A.J., and Prasad, V.N. 2012. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust. Flame, 159(10), 3079–3095. doi:10.1016/j.combustflame.2012.04.008
  • Jones, W.P., and Navarro-Martinez, S. 2007. Large Eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame, 150(3), 170–187. doi:10.1016/j.combustflame.2007.04.003
  • Jones, W.P., Navarro-Martinez, S., and Röhl, O., 2007. Large Eddy simulation of hydrogen auto-ignition with a probability density function method. Proceedings of the Combustion Institute Heidelberg, Germany, 31, 1765–1771.
  • Jones, W.P., and Prasad, V.N. 2010. Large Eddy simulation of the Sandia flame series (D-F) using the Eulerian stochastic field method. Combust. Flame, 157(9), 1621–1636. doi:10.1016/j.combustflame.2010.05.010
  • Kariuki, J., Dawson, J.R., and Mastorakos, E. 2012. Measurements in turbulent premixed bluff body flames close to blow-off. Combust. Flame, 159(8), 2589–2607. doi:10.1016/j.combustflame.2012.01.005
  • Kariuki, J., Dowlut, A., Yuan, R., Balachandran, R., and Mastorakos, E., 2015. Heat release imaging in turbulent premixed methane-air flames close to blow-off. In: Proceedings of the Combustion Institute. Vol. 35. The Combustion Institute, San Francisco, California, USA,  pp. 1443–1450.
  • Kazakov, A., and Frenklach, M., 2005. Reduced Reaction Sets based on GRI-Mech 1.2.
  • Kerstein, A.R., Ashurst, T., and Williams, F.A. 1988. Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev., 37, 2728–2731. doi:10.1103/PhysRevA.37.2728
  • Kim, J., and Pope, S.B. 2014. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theor. Model., 18(3), 388–413. doi:10.1080/13647830.2014.919411
  • Kim, Y.J., Lee, B.J., and Im, H.G., 2018. Hydrodynamic and chemical scaling for blow-off dynamics of lean premixed flames stabilized on a meso-scale bluff-body. Proceedings of the Combustion Institute, Dublin, Ireland, 1–11.
  • Liang, L., Stevens, J.G., and Farrell, J.T. 2009. A dynamic multi-zone partitioning scheme for solving detailed chemical kinetics in reactive flow computations. Combust. Sci. Technol., 181(11), 1345–1371. doi:10.1080/00102200903190836
  • Longwell, J.P., Chenevey, J.E., Clark, W.W., and Frost, E.E. 1949. Flame stabilization by baffles in a high velocity gas stream. Symp. Combust. Flame Explosion Phenom., 3(1), 40–44. doi:10.1016/S1062-2896(49)80007-9
  • Longwell, J.P., Frost, E.E., and Weiss, M.A. 1953. Flame stability in bluff body recirculation zones. Ind. Eng. Chem., 45(8), 1629–1633. doi:10.1021/ie50524a019
  • Lourier, J.-M., Eberle, C., Noll, B., and Aigner, M., 2015. Influence of turbulence-chemistry interaction modeling on the structure and the stability of a swirl-stabilized flame. In: Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Montreal, Canada, pp. 1–12.
  • Lu, T., and Law, C.K. 2008. A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry. Combust. Flame, 154(4), 761–774. doi:10.1016/j.combustflame.2008.04.025
  • Ma, P.C., Wu, H., Labahn, J.W., Jaravel, T., and Ihme, M. 2018. Analysis of transient blow-out dynamics in a swirl-stabilized combustor using large-Eddy simulations. Proc. Combust. Inst., 17, 1–10.
  • Ma, T., Stein, O.T., Chakraborty, N., and Kempf, A.M. 2013. A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model., 17(3), 431–482. doi:10.1080/13647830.2013.779388
  • Massey, J.C., Langella, I., and Swaminathan, N. 2018. Large eddy simulation of a bluff body stabilised flame using flamelets. Flow Turbul. Combust., 1–20.
  • Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., and Bondi, S. 2006. A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame, 145(1–2), 88–104. doi:10.1016/j.combustflame.2005.12.002
  • Nogenmyr, K.J., Fureby, C., Bai, X.S., Petersson, P., Collin, R., and Linne, M. 2009. Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame. Combust. Flame, 156(1), 25–36. doi:10.1016/j.combustflame.2008.06.014
  • Nordmeyer-Massner, J.A., De Zanche, N., and Pruessmann, K.P. 2009. Mechanically adjustable coil array for wrist MRI. Magn. Reson. Med., 61(2), 429–438. doi:10.1002/mrm.v61:2
  • Pang, K.M., Jangi, M., Bai, X.S., Schramm, J., and Walther, J.H. 2018. Modelling of diesel spray flames under engine-like conditions using an accelerated Eulerian stochastic field method. Combust. Flame, 193, 363–383. doi:10.1016/j.combustflame.2018.03.030
  • Peters, N. 1999. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech., 384(1), 107–132. doi:10.1017/S0022112098004212
  • Pitsch, H. 2005. Large-Eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech., 38(1), 453–482. doi:10.1146/annurev.fluid.38.050304.092133
  • Poinsot, T., and Veynante, D. 2000. Theoretical and Numerical Combustion, Edwards, Toulouse, France.
  • Pope, S.B., 1990. Computations of turbulent combustion: progress and challenges. Tweny-Third Symposium (International) on Combustion/The Combustion Institute, Orléans, France, 591–612.
  • Pope, S.B. 2000. Turbulent Flows, Cambridge University Press, Cambridge.
  • Pope, S.B. 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys., 6, 35. doi:10.1088/1367-2630/6/1/035
  • Potturi, A.S., and Edwards, J.R. 2015. Large-Eddy/Reynolds-averaged Navier-Stokes simulation of cavity-stabilized ethylene combustion. Combust. Flame, 162(4), 1176–1192. doi:10.1016/j.combustflame.2014.10.011
  • Ranjan, R., Muralidharan, B., Nagaoka, Y., and Menon, S. 2016. Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames. Combust. Sci. Technol., 188(9), 1496–1537. doi:10.1080/00102202.2016.1198336
  • Ren, Z., Goldin, G.M., Hiremath, V., and Pope, S.B. 2011. Reduced description of reactive flows with tabulation of chemistry. Combust. Theor. Model., 15(6), 827–848. doi:10.1080/13647830.2011.574156
  • Rochette, B., Collin-Bastiani, F., Gicquel, L., Vermorel, O., Veynante, D., and Poinsot, T. 2018. Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames. Combust. Flame, 191, 417–430. doi:10.1016/j.combustflame.2018.01.016
  • Russi, M.J., Cornet, I., and Cornog, R., 1953. The influence of flame holder temperature on flame stabilization. Symposium (International) on Combustion, Massachusetts Institute of Technology (MIT), United States, 743–748.
  • Sandia, 1998. Sandia TNF-Workshop. In: Sandia TNF-Workshop Boulder, Colorado, USA.
  • Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., and Law, C.K. 2007. Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combustion Inst., 31(1), 1291–1298. doi:10.1016/j.proci.2006.08.025
  • Schmitt, P., Poinsot, T., Schuermans, B., and Geigle, K.P. 2007. Large-Eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech., 570(2007), 17. doi:10.1017/S0022112006003156
  • Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.U., Krebs, W., Prade, B., Kaufmann, P., and Veynante, D. 2004. Compressible large Eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame, 137(4), 489–505. doi:10.1016/j.combustflame.2004.03.008
  • Shanbhogue, S.J., Husain, S., and Lieuwen, T. 2009. Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combustion Sci., 35(1), 98–120. doi:10.1016/j.pecs.2008.07.003
  • Sitte, M.P., Bach, E., Kariuki, J., Bauer, H.-J., and Mastorakos, E. 2016. Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames. Combust. Theor. Model., 7830(April), 1–18.
  • Sjunnesson, A., Henrikson, P., and Löfström, C., 1992. CARS measurements and visualization of reacting flows in a bluff body stabilized flame. 28th Joint Propulsion Conference and Exhibit, Nashville, USA.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. the basic equations. Mon. Weather Rev., 91, 99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Sommerer, Y., Galley, D., Poinsot, T., Ducruix, S., Lacas, F., and Veynante, D. 2004. Large Eddy simulation and experimental study of flashback and blow-off in a lean partially premixed swirled burner. J. Turbul., 5, 37–41. doi:10.1088/1468-5248/5/1/037
  • Spalding, D. 1953. Theoretical aspects of flame stabilization: an approximate graphical method for the flame speed of mixed gases. Aircr. Eng. Aerosp. Technol., 25(9), 264–276. doi:10.1108/eb032332
  • Spalding, D.B. 1977. Development of the Eddy-break-up model of turbui˜ent combustion. Symp. (Int.) Combust., 16(1), 1657–1663. doi:10.1016/S0082-0784(77)80444-X
  • Strakey, P.A., and Eggenspieler, G. 2010. Development and validation of a thickened flame modeling approach for large Eddy simulation of premixed combustion. J. Eng. Gas Turbines Power, 132(7), 071501. doi:10.1115/1.4000119
  • Tabor, G., and Weller, H.G. 2004. Large Eddy simulation of premixed turbulent combustion using flame surface wrinkling model. Flow, Turbul. Combust., 72(1), 1–28. doi:10.1023/B:APPL.0000014910.06345.fb
  • Tyliszczak, A., Cavaliere, D.E., and Mastorakos, E. 2014. LES/CMC of blow-off in a liquid fueled swirl burner. Flow, Turbul. Combust., 92(1–2), 237–267. doi:10.1007/s10494-013-9477-5
  • Vagelopoulos, C.M., Egolfopoulos, F.N., and Law, C.K. 1994. Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Symp. (Int.) Combust., 25(1), 1341–1347. doi:10.1016/S0082-0784(06)80776-9
  • Valiño, L. 1998. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow, Turbul. Combust., 60(2), 157–172. doi:10.1023/A:1009968902446
  • Wang, H., Juddoo, M., Starner, S.H., Masri, A.R., and Pope, S.B. 2013. A novel transient turbulent jet flame for studying turbulent combustion. Proc. Combustion Inst., 34(1), 1251–1259. doi:10.1016/j.proci.2012.06.021
  • Warnatz, J., and Karbach, V., 1997. C2 mechanism for methane-air combustion. In: Third International Workshop on Measurements and Computation of Turbulent nonpremixed flames Boulder, Colorado USA.
  • Weller, H. 1993. The development of a new flame area combustion model using conditional averaging. Tech. Rep. March..
  • Weller, H.G., and Tabor, G. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers Phys., 12(6), 620–631. doi:10.1063/1.168744
  • Williams, G., and Shipman, C. 1953. Some properties of rod stabilized flames of homogeneous gas mixtures. Proc. Combunstion Inst., 4, 733–742. doi:10.1016/S0082-0784(53)80096-2
  • Williams, G.C., Hottel, H.C., and Scurlock, A.C. 1949. Flame stabilization and propagation in high velocity gas streams. Symp. Combust. Flame Explosion Phenom., 3(1), 21–40. doi:10.1016/S1062-2896(49)80006-7
  • Wright, F. 1959. Bluff-body flame stabilization: blockage effects. Combust. Flame, 3, 319–337. doi:10.1016/0010-2180(59)90035-5
  • Zettervall, N., Nordin-Bates, K., Nilsson, E.J., and Fureby, C. 2017. Large Eddy simulation of a premixed bluff body stabilized flame using global and skeletal reaction mechanisms. Combust. Flame, 179, 1–22. doi:10.1016/j.combustflame.2016.12.007
  • Zhang, M., Hu, Z., He, G., and Liu, P. 2010. Large-Eddy simulation of kerosene spray combustion in a model scramjet chamber. Proc. Inst. Mech. Eng. Part. G: J. Aerosp. Eng., 224(9), 949–960. doi:10.1243/09544100JAERO738
  • Zukoski, E.E., and Marble, F.E. 1956. Experiments Concerning the Mechanism of Flame Blowoff from Bluff Bodies. Tech. Rep., Guggenheim Jet Propulsion Center, Northwestern University, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.