218
Views
6
CrossRef citations to date
0
Altmetric
Articles

Flame Propagation Enhancement by Dielectric Barrier Discharge-Generated Intermediate Species

, , , &
Pages 1972-1989 | Received 31 May 2018, Accepted 22 Oct 2018, Published online: 31 Oct 2018

References

  • Adamovich, I.V., Choi, I., Jiang, N., Kim, J.-H., Keshav, S., Lempert, W.R., Mintusov, E., Nishihara, M., Samimy, M., and Uddi, M. 2009. Plasma assisted ignition and high-speed flow control: non-thermal and thermal effects. Plasma Sources Sci. Technol., 18, 034018. doi:10.1088/0963-0252/18/3/034018
  • Adamovich, I.V., and Lempert, W.R. 2015. Challenges in understanding and predictive model development of plasma-assisted combustion. Plasma Phys. Contr. F., 57, 1. doi:10.1088/0741-3335/57/1/014001
  • Aleksandrov, N.L., Kindysheva, S.V., Kosarev, I.N., Starikovskaia, S.M., and Starikovskii, A.Y. 2009. Mechanism of ignition by non-equilibrium plasma. Proc. Combustion Inst., 32(1), 205–212. doi:10.1016/j.proci.2008.06.124
  • Asakawa, D., Kuramochi, A., Takahashi, E., and Saito, N. 2018. Real-time monitoring for reforming processes of liquid hydrocarbon fuel-air pre-mixtures by non-thermal plasmas using ion attachment mass spectrometry. Phys. Chem. Chem. Phys., 20(2), 1082–1090. doi:10.1039/c8cp02903b
  • Bak, M.S., Do, H., Mungal, M.G., and Cappelli, M.A. 2012. Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit. Combust Flame, 159(10), 3128–3137. doi:10.1016/j.combustflame.2012.03.023
  • Barlow, R.S., Karpetis, A.N., Frank, J.H., and Chen, J.Y. 2001. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust Flame, 127(3), 2102–2118. doi:10.1016/S0010-2180(01)00313-3
  • Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K. 1998. A comprehensive modeling study of n-heptane oxidation. Combust Flame, 114(1–2), 149–177. doi:10.1016/S0010-2180(97)00282-4
  • Ehn, A., Zhu, J.J., Petersson, P., Li, Z.S., Aldén, M., Fureby, C., Hurtig, T., Zettervall, N., Larsson, A., and Larfeldt, J. 2015. Plasma assisted combustion: effects of O3 on large scale turbulent combustion studied with laser diagnostics and large eddy simulations. Proc. Combustion Inst., 35(3), 3487–3495. doi:10.1016/j.proci.2014.05.092
  • Fujii, T. 1992. A novel method for detection of radical species in the gas phase: usage of Li+ ion attachment to chemical species. Chem. Phys. Lett., 191(1–2), 162–168. doi:10.1016/0009-2614(92)85386-O
  • Gao, X., Zhang, Y., Adusumilli, S., Seitzman, J., Sun, W., Ombrello, T., and Carter, C. 2015. The effect of ozone addition on laminar flame speed. Combust Flame, 162(10), 3914–3924. doi:10.1016/j.combustflame.2015.07.028
  • Ju, Y., and Sun, W. 2015. Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combustion Sci., 48(C), 21–83. doi:10.1016/j.pecs.2014.12.002
  • Kee, R., Grcar, J., Smooke, M., Miller, J., and Meeks, E. 1985. PREMIX : A FORTRAN program for modeling steady laminar one-dimensional. SANDIA National Laboratories, SAND85-8240, (April), 1–87.
  • Kosarev, I.N., Aleksandrov, N.L., Kindysheva, S.V., Starikovskaia, S.M., and Starikovskii, A.Y. 2008. Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures. Combust Flame, 154(3), 569–586. doi:10.1016/j.combustflame.2008.03.007
  • Kosarev, I.N., Aleksandrov, N.L., Kindysheva, S.V., Starikovskaia, S.M., and Starikovskii, A.Y. 2009. Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6- to C5H12-containing mixtures. Combust Flame, 156(1), 221–233. doi:10.1016/j.combustflame.2008.07.013
  • Kosarev, I.N., Kindysheva, S.V., Momot, R.M., Plastinin, E.A., and Aleksandrov, N.L. 2016. Comparative study of nonequilibrium plasma generation and plasma assisted ignition for C2 hydrocarbons. Combust Flame, 165, 259–271. doi:10.1016/j.combustflame.2015.12.011
  • Kuramochi, A., and Takahashi, E. 2017. Application of non-thermal plasmas to flame propagation enhancement in a rapid compression and expansion machine. The 9th International Conference on Modeling and Diagnostics for Advanced Engine Systems, Okayama Convention Center in Okayama, Japan, The Japan Society of Mechanical Engineers, B311.
  • Kuramochi, A., Takahashi, E., and Nishioka, M. 2017. Application of non-thermal plasmas to flame propagation enhancement in a rapid compression and expansion machine. The 9th International Conference on Modeling and Diagnostics for Advanced Engine Systems, Okayama Convention Center in Okayama, Japan, The Japan Society of Mechanical Engineers, B311.
  • Mariani, A., and Foucher, F. 2014. Radio frequency spark plug: an ignition system for modern internal combustion engines. Appl. Energy, 122, 151–161. doi:10.1016/j.apenergy.2014.02.009
  • Mehl, M., Pitz, W.J., Sjöberg, M., and Dec, J.E. 2009. Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine. SAE Technical Paper, 2009-01-18.
  • Nishioka, M., Ishigami, Y., Horii, H., Umeda, Y., and Nakamura, Y. 2006. NOx reduction mechanism of a methane-air Smithells flame. Combust Flame, 147(1–2), 93–107. doi:10.1016/j.combustflame.2006.07.008
  • Nishiyama, A., and Ikeda, Y. 2012. Improvement of lean limit and fuel consumption using microwave plasma ignition technology. SAE, 2012-01-1139.
  • Ombrello, T., Won, S.H., Ju, Y., and Williams, S. 2010a. Flame propagation enhancement by plasma excitation of oxygen. Part I: effects of O3. Combust Flame, 157, 1906–1915. doi:10.1016/j.combustflame.2010.02.005
  • Ombrello, T., Won, S.H., Ju, Y., and Williams, S. 2010b. Flame propagation enhancement by plasma excitation of oxygen. Part II: effects of O2(a1Δg). Combust Flame, 157(10), 1916–1928. doi:10.1016/j.combustflame.2010.02.004
  • Padala, S., Nishiyama, A., and Ikeda, Y. 2017. Flame size measurements of premixed propane-air mixtures ignited by microwave-enhanced plasma. Proc. Combustion Inst., 36(3), 4113–4119. doi:10.1016/j.proci.2016.06.168
  • Pan, J., Wei, H., Shu, G., Chen, Z., and Zhao, P. 2016. The role of low temperature chemistry in combustion mode development under elevated pressures. Combust. Flame, 174, 179–193. doi:10.1016/j.combustflame.2016.09.012
  • Pineda, D.I., Wolk, B., Chen, J.-Y., and Dibble, R.W. 2016. Application of corona discharge ignition in a boosted direct-injection single cylinder gasoline engine: effects on combustion phasing, fuel consumption, and emissions. SAE Int. J. Engines, 9(3), 2016-01-9045. doi:10.4271/2016-01-9045
  • Popov, N.A. 2016. Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures. Plasma Sources Sci. Technol., 25(4), 043002. doi:10.1088/0963-0252/25/4/043002
  • Starikovskaia, S.M. 2006. Plasma assisted ignition and combustion. J. Phys. D: Appl. Phys., 39(16), R265–R299. doi:10.1088/0022-3727/39/16/R01
  • Starikovskaia, S.M. 2014. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms. J. Phys. D: Appl. Phys., 47(35), 353001. doi:10.1088/0022-3727/47/35/353001
  • Starikovskiy, A. 2015. Physics and chemistry of plasma-assisted combustion. Philosophical Trans. Royal Soc. A: Mathematical, Phys. Eng. Sci., 373(2048), 20150074. doi:10.1098/rsta.2015.0074
  • Takahashi, E., Kuramochi, A., and Nishioka, M. 2018. Turbulent flame propagation enhancement by application of dielectric barrier discharge to fuel-air mixtures. Combust Flame, 192, 401–409. doi:10.1016/j.combustflame.2018.02.016
  • Wang, Z.H., Yang, L., Li, B., Li, Z.S., Sun, Z.W., Aldén, M., Cen, K.F., and Konnov, A.A. 2012. Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combust Flame, 159(1), 120–129. doi:10.1016/j.combustflame.2011.06.017
  • Wolk, B., DeFilippo, A., Chen, J.Y., Dibble, R., Nishiyama, A., and Ikeda, Y. 2013. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber. Combust Flame, 160(7), 1225–1234. doi:10.1016/j.combustflame.2013.02.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.