2,420
Views
18
CrossRef citations to date
0
Altmetric
Articles

Soot Modeling of Ethylene Counterflow Diffusion Flames

, , ORCID Icon & ORCID Icon
Pages 1473-1483 | Received 10 Sep 2018, Accepted 22 Oct 2018, Published online: 31 Oct 2018

References

  • Barlow, R.S., et al. 2000. Computational fluid dynamics in industrial combustion, 1st edn. Edited by R. S. Barlow et al, CRC Press, New York. Available at: https://www.crcpress.com/Computational-Fluid-Dynamics-in-Industrial-Combustion/Jr-Gershtein-Li/p/book/9780849320002.
  • Barlow, R.S., Karpetis, A.N., Frank, J.H., and Chen, J.-Y. 2001. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame, 127(3), 2102–2118. doi:10.1016/S0010-2180(01)00313-3.
  • Benson, S.W., et al. 1969. Additivity rules for the estimation of thermochemical properties. Chem. Rev. doi:10.1021/cr60259a002.
  • Bockhorn, H., D’Anna, A., Sarofim, A.F., and Wang, H. Combustion generated fine carbonaceous particles 2007. doi: 10.5445/KSP/1000013744.
  • Burke, S.M., Burke, U., Mc Donagh, R., Mathieu, O., Osorio, I., Keesee, C., Morones, A., Petersen, E.L., Wang, W., DeVerter, T.A., Oehlschlaeger, M.A., Rhodes, B., Hanson, R.K., Davidson, D.F., Weber, B.W., Sung, C.-J., Santner, J., Ju, Y., Haas, F.M., Dryer, F.L., Volkov, E.N., Nilsson, E.J.K., Konnov, A.A., Alrefae, M., Khaled, F., Farooq, A., Dirrenberger, P., Glaude, P.-A., Battin-Leclerc, F., and Curran, H.J. 2015. An experimental and modeling study of propene oxidation. Part 2: ignition delay time and flame speed measurements. Combust. Flame, 162(2), 296–314. doi:10.1016/j.combustflame.2014.07.032.
  • Chrigui, M., et al. 2012. Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust flame. Elsevier, 159(8), 2718–2741. doi:10.1016/J.COMBUSTFLAME.2012.03.009.
  • Cuoci, A., et al. 2015. Open SMOKE++: an object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun, 192, 237–264. doi:10.1016/j.cpc.2015.02.014.
  • D’Anna, A. 2009. Combustion-formed nanoparticles. Proc. Combustion Inst., 32(1), 593–613. doi:10.1016/j.proci.2008.09.005.
  • Franzelli, B., et al. 2017. Numerical investigation of soot-flame-vortex interaction. Proc. Combustion Inst., 36(1), 753–761. Elsevier Inc.. doi:10.1016/j.proci.2016.07.128.
  • Frenklach, M., et al. 1985. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Symp. Int. Combust. Proc., 20(1), 887–901. doi:10.1016/S0082-0784(85)80578-6.
  • Friedlander, S.K. 1977. Smoke, Dust, and Haze: Fundamentals of Aerosal Behavior, John Wiley & Sons, New York.
  • Ghiassi, H., Toth, P., Jaramillo, I.C., and Lighty, J.S. 2016. Soot oxidation-induced fragmentation: part 1: the relationship between soot nanostructure and oxidation-induced fragmentation. Combust. Flame, 163, 179–187. doi:10.1016/j.combustflame.2015.09.023.
  • Gomez, A., and Rosner, D.E. 1993. Thermophoretic effects on particles in counterflow laminar diffusion flames. Combustion Sci. Technol, 89(5–6), 335–362. doi:10.1080/00102209308924118.
  • Goos, E., Burcat, A., and Ruscic, B. 2016. BurcatThermo. Available at: http://garfield.chem.elte.hu/Burcat/burcat.html (Accessed: 1 May 2017).
  • Grosshandler, W. 1993. RadCal: A narrow band model for radiation calculations in a combustion environment. NIST technical note TN 1402. https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1402.pdf
  • Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B. 1954. Molecular Theory of Gases and Liquids, John Wiley & Sons, New York.
  • Hwang, J.Y., and Chung, S.H. 2001. Growth of soot particles in counterflow diffusion flames of ethylene. Combust. Flame, 125(1–2), 752–762. Elsevier. doi:10.1016/S0010-2180(00)00234-0.
  • Kennedy, I.M., Kollmann, W., and Chen, J.-Y. 1990. A model for soot formation in a laminar diffusion flame. Combust. Flame, 81(1), 73–85. doi:10.1016/0010-2180(90)90071-X.
  • Liu, F., Guo, H., J. Smallwood, G., and El Hafi, M. 2004. Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames. J. Quant. Spectrosc. Radiat. Transfer, 84(4), 501–511. doi:10.1016/S0022-4073(03)00267-X.
  • Mehta, R.S., Haworth, D.C., and Modest, M.F. 2009. An assessment of gas-phase reaction mechanisms and soot models for laminar atmospheric-pressure ethylene–air flames. Proc. Combustion Inst., 32(1), 1327–1334. doi:10.1016/j.proci.2008.06.149.
  • Metcalfe, W.K., et al. 2013. A hierarchical and comparative kinetic modeling study of C1- C2hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 45(10), 638–675. doi:10.1002/kin.20802.
  • Pejpichestakul, W., Frassoldati, A., Parente, A., and Faravelli, T. 2018. Kinetic modeling of soot formation in premixed burner-stabilized stagnation ethylene flames at heavily sooting condition. Fuel, 234(July), 199–206. Elsevier. doi:10.1016/j.fuel.2018.07.022.
  • Pejpichestakul, W., Ranzi, E., et al. 2018. Examination of a soot model in premixed laminar flames at fuel-rich conditions. Proc. Combustion Inst., 1–9. Elsevier Inc. doi:10.1016/j.proci.2018.06.104.
  • Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., and Law, C.K. 2012. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combustion Sci., 38(4), 468–501. doi:10.1016/j.pecs.2012.03.004.
  • Richter, H., Granata, S., Green, W.H., and Howard, J.B. 2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc. Combustion Inst., 30(1), 1397–1405. doi:10.1016/j.proci.2004.08.088.
  • Ruscic, B. 2015. Active thermochemical tables: sequential bond dissociation enthalpies of methane, ethane, and methanol and the related thermochemistry. J. Phys. Chem., 119(28), 7810–7837. doi:10.1021/acs.jpca.5b01346.
  • Saggese, C., Ferrario, S., Camacho, J., Cuoci, A., Frassoldati, A., Ranzi, E., Wang, H., and Faravelli, T. 2015. Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame. Combust. Flame, 162(9), 3356–3369. The Combustion Institute. doi:10.1016/j.combustflame.2015.06.002.
  • Sirignano, M., Kent, J., and D’Anna, A. 2015. Further experimental and modelling evidences of soot fragmentation in flames. Proc. Combustion Inst., 35(2), 1779–1786. doi:10.1016/j.proci.2014.05.010.
  • Slavinskaya, N.A., Riedel, U., Dworkin, S.B., and Thomson, M.J. 2012. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Combust. Flame, 159(3), 979–995. The Combustion Institute. doi:10.1016/j.combustflame.2011.10.005.
  • Stagni, A., Cuoci, A., Frassoldati, A., Ranzi, E., and Faravelli, T. 2018. Numerical investigation of soot formation from microgravity droplet combustion using heterogeneous chemistry. Combust. Flame, 189, 393–406. Elsevier Inc. doi: 10.1016/j.combustflame.2017.10.029.
  • Wang, H., and Frenklach, M. 1997. A detailed kinetic modeling study of aromatics formation, growth and oxidation in laminar premixed ethylene and acetylene flames. Combust. Flame, 2180(97), 173–221. doi:10.1016/S0010-2180(97)00068-0.
  • Wang, Y., and Chung, S.H. 2016. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames. Combust. Flame, 165, 433–444. doi:10.1016/j.combustflame.2015.12.028.
  • Zhang, H.R., Eddings, E.G., Sarofim, A.F., and Westbrook, C.K. 2009. Fuel dependence of benzene pathways. Proc. Combustion Inst., 32(1), 377–385. The Combustion Institute. doi:10.1016/j.proci.2008.06.011.