811
Views
18
CrossRef citations to date
0
Altmetric
Articles

Combustion Characteristics of Boron-HTPB-Based Solid Fuels for Hybrid Gas Generator in Ducted Rocket Applications

, &
Pages 2082-2100 | Received 07 Jun 2018, Accepted 02 Nov 2018, Published online: 08 Nov 2018

References

  • Balas, S., and Natan, B. 2016. Boron oxide condensation in a hydrocarbon-boron gel fuel ramjet. J. Propuls. Power, 32(4), 967–974. doi:10.2514/1.B35928
  • Beckstead, M.W. 2002. A summary of aluminum combustion. Present. RTO/VKI Spec. Course Intern. Aerodyn. Solid Rocket Propuls., 32(6), 2107–2114.
  • Chaturvedi, S., and Dave, P.N. 2015. Solid propellants: AP/HTPB composite propellants. Arab. J. Chem., 1–8. doi:10.1016/j.arabjc.2014.12.033
  • Chiaverini, M.J., Harting, G.C., Lu, Y.C., Kuo, K.K., Peretz, A., Jones, H.S., Wygle, B.S.and Arves, J.P. 1999. Pyrolysis behavior of hybrid-rocket solid fuels under rapid heating conditions. J. Propul. Power, 15(6), 888–895. doi:10.2514/2.5512
  • Chiaverini, M.J., Serin, N., Johnson, D.K., Lu, Y.C., Kuo, K.K., and Risha, G.A. 2000. Regression rate behavior of hybrid rocket solid fuels. J. Propuls. Power, 16(1), 125–132. doi:10.2514/2.5541
  • Chintersingh, K.L., Schoenitz, M., and Dreizin, E.L. 2016. Oxidation kinetics and combustion of boron particles with modified surface. Combust. Flame, 173, 288–295. doi:10.1016/j.combustflame.2016.08.027
  • Davenas, A. 1993. Future of Solid Rocket Propulsion, Pergamon Press, New York, USA.
  • Evans, B., Favorito, N., Risha, G., Boyer, E., Wehrman, R., and Kuo, K.K. 2004. characterization of nano-sized energetic particle enhancement of solid-fuel burning rates in an x-ray transparent hybrid rocket engine. AIAA Paper 2004-3821.
  • Foelsche, R., Burton, R., and Krier, H. 1999. Boron particle ignition and combustion at 30–150 atm. Combust. Flame, 117(1–2), 32–58. doi:10.1016/S0010-2180(98)00080-7
  • Fry, R.S. 2004. A century of ramjet technology propulsion evolution. J. Propul. Power, 20(1), 27–58. doi:10.2514/1.9178
  • Gany, A., and Netzer, D.W. 1986. Combustion studies of metallized fuels for solid-fuel ramjets. J. Propul. Power, 2(5), 423–427. doi:10.2514/3.22924
  • Gaydon, A.G. (Ed.). 1974. The Spectroscopy of Flames, Halsted Press, New York, NY.
  • Hashim, S.A., Kangle, S.M., Karmakar, S., and Roy, A. 2018a. Screening of nano-aluminum based solid fuels for hybrid rocket applications. AIAA Paper 2018-0669.
  • Hashim, S.A., Karmakar, S., Roy, A., and Srivastava, S.K. 2018b. Regression rates and burning characteristics of boron-loaded paraffin-wax solid fuels in ducted rocket applications. Combust. Flame, 191, 287–297. doi:10.1016/j.combustflame.2018.01.018
  • Hedman, T.D., Quigley, J.N., Kalman, J., and Washburn, E.B. 2017. Small-scale solid ramjet fuel ignition experiment. J. Propuls. Power, 33(5), 1315–1319. doi:10.2514/1.B36338
  • Hu, J.X., Xia, Z.X., Zhang, W.H., Fang, Z.B., Wang, D.Q., and Huang, L.Y. 2012. Boron particle ignition in secondary chamber of ducted rocket. Int. J. Aerosp. Eng., 2012, 1–9. doi:10.1155/2012/160620
  • Jain, S.R. 2002. Solid propellant binders. J. Sci. Ind. Res., 61, 899–911.
  • Karmakar, S., Acharya, S., and Dooley, K.M. 2012. Ignition and combustion of boron nanoparticles in ethanol spray flame. J. Propul. Power, 28(4), 707–718. doi:10.2514/1.B34358
  • Karmakar, S., Hanberry, J., Dooley, K.M., and Acharya, S. 2011. Pre- and post-combustion characteristics of boron nanoparticles in an ethanol spray flame. Int. J. Energ. Mater. Chem. Propuls., 10(1), 1–17.
  • King, M.K. 2009. Aluminum combustion in a solid rocket motor environment. Proc. Combust. Inst., 32(2), 2107–2114.
  • Komornik, D., and Gany, A. 2017. Study of a hybrid gas generator for a ducted rocket. Combust. Explos. Shock Waves, 53(3), 293–297.
  • Kubota, N., Miyata, K., Kuwahara, T., Mitsuno, M., and Nakagawa, I. 1991. Combustion of energetic fuel for ducted rockets (I). Propellants Explos. Pyrotech., 16(2), 51–54.
  • Leingang, J.L., and Petters, D.P. 1996. Ducted rockets. Progress in Astronautic and Aeronautic, Tactical Missile Propulsion. Eds.. Jensen, G.E., and Netzer, D.W., Vol. 170, 447–468. American Institute of Aeronautics and Astronautics: Reston, VA.
  • Liang, D., Liu, J., Chen, B., Zhou, J., and Cen, K. 2016. Improvement in energy release properties of boron-based propellant by oxidant coating. Thermochem. Acta, 638, 58–68.
  • Liang, D., Liu, J., Zhou, Y., and Zhou, J. 2017. Ignition and combustion characteristics of amorphous boron and coated boron particles in oxygen jet. Combust. Flame, 185, 292–300.
  • Liu, D., Xia, Z., Huang, L., and Hu, J. 2014. Boron particle combustion in solid rocket ramjets. J. Aerosp. Eng., 28(4), 04014112.
  • Macek, A., and Semple, J.M. 1969. Combustion of boron particles at atmospheric pressure. Combust. Sci. Technol., 1(3), 181–191.
  • Mady, C.J., Hickey, P.J., and Netzer, D.W. 1978. Combustion behavior of solid-fuel ramjets. J. Spacecr., 15, 131–132.
  • Maligne, D., Cessou, A., and Stepowski, D. 2009. Chemiluminescence of BO2 to map the creation of thermal NO in flame. Combust. Flame, 156, 348–361.
  • Miyayama, T., Oshima, H., Toshiyuki, S., Odawara, T., Tanabe, M., and Kuwahara, T. 2006. Improving combustion of boron particles in secondary combustor of ducted rockets. AIAA Paper 2006-5250.
  • Muthiah, R.M., Krishnamurthy, V.N., and Gupta, B.R. 1992. Rheology of HTPB propellant, I: effect of solid loading, oxidizer particle size, and aluminum content. J. Appl. Polym. Sci., 44(11), 2043–2052.
  • Muthiah, R.M., Manjari, R., Krishnamurthy, V.N., and Gupta, B.R. 1991. Effect of temperature on the rheological behavior of hydroxyl terminated polybutadiene propellant slurry. Polym. Eng. Sci., 31(2), 61–66.
  • Natan, B., and Gany, A. 1991. Ignition and combustion of boron particles in the flow field of a solid fuel ramjet. J. Propul. Power, 7(1), 37–43.
  • Natan, B., and Gany, A. 1993. Combustion characteristic of a boron-fueled solid fuel ramjet with aft-burner. J. Propul. Power, 9(5), 694–701.
  • Natan, B., Haddad, A., and Arieli, R. 2009. Performance assessments of a boron containing gel fuel ramjet. AIAA Paper 2009-1421.
  • Netzer, D.W. 1978. Modeling solid fuel ramjet combustion. J. Spacecr., 14, 762–766.
  • Netzer, D.W., and Gany, A. 1991. Burning and flameholding characteristics of a miniature solid fuel ramjet combustor. J. Propul. Power, 7(3), 357–363.
  • Obuchi, K., Tanabe, M., and Kuwahara, T. 2008. Ignition characteristics of boron particles in the secondary combustor of ducted rockets-effects of magnalium particle addition. AIAA Paper 2008-943.
  • Ojha, P.K., Maji, R., and Karmakar, S. 2018. Effect of crystallinity on droplet regression and disruptive burning characteristics of nanofuel droplets containing amorphous and crystalline boron nanoparticles. Combust. Flame, 188, 412–427.
  • Pearse, R.W., and Gaydon, A.G. (Ed.). 1976. The Identification of Molecular Spectra, Chapman and Hall, London.
  • Risha, G., Boyer, E., Wehrman, R., and Kuo, K.K. 2002. Performance comparison of HTPB-based solid fuels containing nano-sized energetic powder in a cylindrical hybrid rocket motor. AIAA Paper 2002-3576.
  • Risha, G.A., Evans, B.J., Boyer, E. and Kuo, K.K. 2007. Metals, energetic additives, and special binders used in solid fuels for hybrid rockets. Progress in Astronautics and Aeronautics, Fundamentals of Hybrid Rocket Combustion and Propulsion, Eds. Chiaverini, M.J., and Kuo., K.K., 218, 413–456. American Institute of Aeronautics and Astronautics, Inc. Reston VA,. doi:10.2514/4.866876
  • Robinson, J.W. (Ed.). 1991. CRC Handbook of Spectroscopy, CRC Press, Florida, USA.
  • Russo Sorge, A. 1999. Hybrid propellants gas generator. ISABE-14th Int. Symp. Air Breath. engines. Florence: Italy.
  • Schadow, K. 1969. Experimental investigation of boron combustion in air-augmented rockets. Aiaa J., 7(10), 1870–1876.
  • Schadow, K. 1970. Investigation of boron combustion for its application in air augmented rockets. Sp. Eng. Proc. Second Int. Conf. Sp. Eng., 15, 264–279.
  • Shark, S.C., Zasck, C.R., Pourpoint, T.L., and Son, S.F. 2014. Solid fuel regression rate and flame characteristics in an oppose d flow burner. J. Propuls. Power, 30(1), 1675–1682.
  • Spalding, M.J., Krier, H., and Burton, R.L. 2000. Boron suboxides measured during ignition and comb of boron in Ar/F/O2 and Ar/N2/O2 mixtures. Combust. Flame, 120(1–2), 200–210.
  • Strand, L.D., Ray, R.L., and Cohen, N.S. 1993. Hybrid rocket combustion study. AIAA Paper 1993-2412.
  • Thomas, J.C., Petersen, E.L., Brady, B.B., and Desain, J. 2014. Hybrid rocket burning rate enhancement by nano-scale additives in HTPB fuel grains. AIAA Paper 2014-3955.
  • Weismiller, M.R., Huba, Z.J., Tuttle, S.G., Epshteyn, A., and Fisher, B.T. 2017. Combustion characteristics of high energy Ti–al–B nanopowders in a decane spray flame. Combust. Flame, 176, 361–369.
  • Yetter, R.A., Cho, S.Y., Rabitz, H., Dryer, F.L., Brown, R.C., and Kolb, C.E. 1989. Chemical kinetic modeling and sensitivity analyses for boron assisted hydrocarbon combustion. Proc. Combust. Inst., 22(1), 919–929.
  • Yetter, R.A., Rabitz, H., Dryer, F.L., Brown, R.C., and Kolb, C.E. 1991. Kinetics of high-temperature B/O/H/C chemistry. Combust. Flame, 83(1–2), 43–62.
  • Young, G., Risha, G.A., Miller, A.G., Glass, R.A., Connell, T.L., and Yetter, R.A. 2010. Combustion of alane-based solid fuels. Int. J. Energ. Mater. Chem. Propuls., 9(3), 249–266.
  • Young, G., Roberts, C., and Dunham, S. 2013a. Combustion behavior of solid oxidizer/gaseous fuel diffusion flames. J. Propuls. Power, 29(2), 362–370.
  • Young, G., Stoltz, C.A., Mayo, D.H., Roberts, C.W., and Milby, C.L. 2013b. Combustion behavior of solid fuels based on PTFE/boron mixtures. Combust. Sci. Technol., 185(8), 1261–1280.
  • Yuasa, S. 2003. Characteristics of ignition and combustion of metals. J. Combust. Soc. Japan, 45(133), 152–163.
  • Zaseck, C.R., Shark, S.C., Son, S.F., and Pourpoint, T.L. 2012. Paraffin fuel and additive combustion in an opposed flow burner configuration. AIAA Paper 2012-3963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.