185
Views
4
CrossRef citations to date
0
Altmetric
Articles

CO2 Adsorption under Dynamic Conditions: An Overview on Rice Husk-Derived Sorbents and Other Materials

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & show all
Pages 1484-1498 | Received 25 Sep 2018, Accepted 07 Nov 2018, Published online: 23 Mar 2019

References

  • Alfè, M., Ammendola, P., Gargiulo, V., Raganati, F., and Chirone, R. 2015. Magnetite loaded carbon fine particles as low-cost CO2 adsorbent in a sound assisted fluidized bed. Proc. Comb. Inst., 35, 2801. doi:10.1016/j.proci.2014.06.037.
  • Ammendola, P., Raganati, F., and Chirone, R. 2017a. CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: thermodynamics and kinetics. Chem. Eng. J., 322, 302. doi:10.1016/j.cej.2017.04.037.
  • Ammendola, P., Raganati, F., Chirone, R., and Miccio, F. 2017b. Preliminary assessment of Tuff as CO2 Sorbent. Energ. Proc., 114, 46. doi:10.1016/j.egypro.2017.03.1145.
  • Arnal, C., Alfè, M., Gargiulo, V., Ciajolo, A., Alzueta, M.U., Millera, A., and Bilbao, R. 2013. Characterization of Soot. Cap. Chap 13 in Cleaner Combustion- Developing Detailed Chemical Kinetic Models, Eds. Battin-Leclerc, F., Simmie, J.M., and Blurock, E., 333–362. Springer, London.
  • Baltrusaitis, J., Jensen, J.H., and Grassian, V.H. 2006. FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3, J. Phys. Chem. B, 110, 12005. doi:10.1021/jp057437j.
  • Bhown, A.S., and Freeman, B.C. 2011. Analysis and status of post-combustion carbon dioxide capture technologies. Environ. Sci. Technol., 45, 8624. doi:10.1021/es104291d.
  • Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S. et al. 2018. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci., 11, 1062.
  • Chang, A.C.C., Chuang, S.S.C., Gray, M., and Soong, Y. 2003. In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(Aminopropyl)triethoxysilane. Energy Fuels, 17, 468. doi:10.1021/ef020176h.
  • Chen, J., Yang, J., Hu, G., Hu, X., Li, Z., Shen, S., Radosz, M., and Fan, M. 2016. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustainable Chem. Eng., 4(3), 1439. doi:10.1021/acssuschemeng.5b01425.
  • D’Alessandro, D.M., Smit, B., and Long, J.R. 2012. Carbon dioxide capture: prospects for new materials Angew. Chem. Int., 49, 6058. doi:10.1002/anie.201000431.
  • Espinal, L., Poster, D.L., Wong-Ng, W., Allen, A.J., and Green, M.L. 2013. Measurement, standards, and data needs for CO2 capture materials: a critical review. Environ. Sci. Technol., 47, 11960. doi:10.1021/es402622q.
  • Gargiulo, V., Alfe, M., Ammendola, P., Raganati, F., and Chirone, R. 2016. CO2 sorption on surface-modified carbonaceous support: probing the influence of the carbon black microporosity and surface polarity. Appl. Surf. Sci., 360, 329. doi:10.1016/j.apsusc.2015.11.026.
  • Gargiulo, V., Alfè, M., Raganati, F., Lisi, L., Chirone, R., and Ammendola, P. 2018. BTC-based metal-organic frameworks: correlation between relevant structural features and CO2 adsorption performances. Fuel, 222, 319. doi:10.1016/j.fuel.2018.02.093.
  • Goel, C., Kaur, H., Bhunia, H., and Bajpai, P.K. 2016. Carbon dioxide adsorption on nitrogen enriched carbon adsorbents: experimental, kinetics, isothermal and thermodynamic studies. J. CO2 Util, 16, 50. doi:10.1016/j.jcou.2016.06.002.
  • Ismagilov, Z.R., Shikina, N.V., Andrievskaya, I.P., Rudina, N.A., Mansurov, Z.A., Burkitbaev, M.M., Biisenbaev, M.A., and Kurmanbekov, A.A. 2009. Preparation of carbonized rice husk monoliths and modification of the porous structure by SiO2 leaching. Cat. Today, 147S, S58. doi:10.1016/j.cattod.2009.07.043.
  • Jacobson, M.Z. 2009. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci., 2, 148. doi:10.1039/B809990C.
  • Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.M., and Bouallou, C. 2010. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng., 30, 53. doi:10.1016/j.applthermaleng.2009.05.005.
  • Lu, C., Bai, H., Wu, B., Su, F., and Hwang, J.F. 2008. Comparative study of CO2 capture by carbon nanotubes, activated carbons and zeolites. Energy Fuels, 22, 3050. doi:10.1021/ef8000086.
  • Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A., and Müller, T.E. 2012. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci., 5, 7281. doi:10.1039/c2ee03403d.
  • Mishra, A.K., and Ramaprabhu, S. 2011. Nano magnetite decorated multiwalled carbon nanotubes: a robust nanomaterial for enhanced carbon dioxide adsorption. Energy Environ. Sci., 4, 889. doi:10.1039/C0EE00076K.
  • Namduri, H., and Nasrazadani, S. 2008. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci., 50(9), 2493. doi:10.1016/j.corsci.2008.06.034.
  • Nanda, S., Reddy, S.N., Mitra, S.K., and Kozinski, J.A. 2016. The progressive routes for carbon capture and sequestration. Energ. Sci. Engineer., 4(2), 99. doi:10.1002/ese3.117.
  • Nugent, P., Belmabkhout, Y., Burd, S.D., Cairns, A.J., Luebke, R., Forrest, K., Pham, T., Ma, S., Space, B., Wojtas, L., Eddaoudi, M., and Zaworotko, M.J. 2013. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nat. Lett., 495, 80. doi:10.1038/nature11893.
  • Oschatz, M., and Antonietti, M. 2018. A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci., 11, 57.
  • Raganati, F., Ammendola, P., and Chirone, R. 2014a. CO2 capture performances of fine solid sorbents in a sound-assisted fluidized bed. Powder Tech., 268, 347. doi:10.1016/j.powtec.2014.08.062.
  • Raganati, F., Gargiulo, V., Ammendola, P., Alfè, M., and Chirone, R. 2014b. CO2 capture performance of HKUST-1 in a sound assisted fluidized bed. Chem. Eng. J., 239, 75. doi:10.1016/j.cej.2013.11.005.
  • Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewelly, N.P., and Maurin, G. 2014. Adsorption by Powders and Porous Solids Principles, Methodology and Applications, Second edition. Elsevier, Amsterdam.
  • Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., and Gupta, R. 2012. Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res., 51, 1438. doi:10.1021/ie200686q.
  • Sankar, S., Sharma, S.K., Kaur, N., Lee, B., Kim, D.Y., Lee, S., and Jung, H. 2016. Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram. Int., 42, 4875. doi:10.1016/j.ceramint.2015.11.172.
  • Soltani, N., Bahrami, A., Pech-Canul, M.I., and González, L.A. 2015. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J., 264, 899. doi:10.1016/j.cej.2014.11.056.
  • Stone, E.J., Lowe, J.A., and Shine, K.P. 2009. The impact of carbon capture and storage on climate. Energy Environ. Sci., 2, 81. doi:10.1039/B807747A.
  • Utkan, G., Sayar, F., Batat, P., Ide, S., Kriechbaurnd, M., and Piskin, E. 2011. Synthesis and characterization of nano magnetite particles and their polymer coated forms. J. Colloid Interface Sci., 353, 372. doi:10.1016/j.jcis.2010.09.081.
  • Wang, L., Rao, L., Xia, B., Wang, L., Yue, L., Liang, Y., DaCosta, H., and Hu, X. 2018. Highly efficient CO2 adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation. Carbon N Y, 130, 31. doi:10.1016/j.carbon.2018.01.003.
  • Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., and Wright, I. 2008. Progress in carbon dioxide separation and capture: a review. J. Environ. Sci., 20, 14. doi:10.1016/S1001-0742(08)60002-9.
  • Yin, G., Liu, Z., Liu, Q., and Wu, W. 2013. The role of different properties of activated carbon in CO2 adsorption. Chem. Eng. J., 230, 133. doi:10.1016/j.cej.2013.06.085.
  • Yue, L., Rao, L., Wang, L., Sun, Y., Wu, Z., DaCosta, H., and Hu, X. 2018. Enhanced CO2 adsorption on nitrogen-doped porous carbons derived from commercial phenolic resin. Energy Fuels, 32(6), 6955. doi:10.1021/acs.energyfuels.8b01028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.