231
Views
7
CrossRef citations to date
0
Altmetric
Articles

Conditions of the Water–Coal Fuel Drop Dispersion at Their Ignition in the Conditions of High-Temperature Heating

, , ORCID Icon &
Pages 2162-2184 | Received 09 Jun 2018, Accepted 13 Nov 2018, Published online: 20 Dec 2018

References

  • Agroskin, A.A. 1961. Physical Properties of Coals, Metallurgizdat, Moscow.
  • Arrhenius, S. 1889. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. (Leipzig), 4, 226–248.
  • Bissett, E.J. 1985. Thermal regeneration of particle filters with large conduction. Mathematical Modeling, 6, 1–18.
  • Chen, Y., Aanjaney, K., and Atrey, A. 2017. A study to investigate pyrolysis of wood particles of various shapes and sizes. Fire Saf. J., 91, 820–827. doi:10.1016/j.firesaf.2017.03.079
  • Fei, Y., Gopan, A., and Axelbaum, R.L. 2014 Oct. Characterization of coal water slurry prepared for PRB coal. J. Fuel Chem. Tecn., 42(10), 1167–1171.
  • Frank-Kamenetskii, D.A. 1987. Diffusion and Heat Transfer in Chemical Kinetics, Nauka, Moscow.
  • Friedemann, J., Wagner, A., Heinze, A., Krzack, S., and Meyer, B. 2016. Direct optical observation of coal particle fragmentation behavior in a drop-tube reactor. Fuel, 166, 382–391. doi:10.1016/j.fuel.2015.11.007
  • Glushkov, D.O., Kuznetsov, G.V., Strizhak, P.A., and Syrodoy, S.V. 2018. Mathematical model simulating the ignition of a droplet of coal water slurry containing petrochemicals. Energy, 150, 262–275. doi:10.1016/j.energy.2018.02.130
  • Glushkov, D.O., Syrodoy, S.V., Zhakharevich, A.V., and Strizhak, P.A. 2016. Ignition of promising coal-water slurry containing petrochemicals: analysis of key aspects. Fuel Process Technol., 148, 224–235. doi:10.1016/j.fuproc.2016.03.008
  • Gremyachkin, V.M., Förtsch, D., Schnell, U., and Hein, K.R.G. 2002. A model of the combustion of a porous carbon particle in oxygen. Combust. Flame, 130(3), 161–170. doi:10.1016/S0010-2180(02)00349-8
  • Guo, Q., Zhang, Z., Xue, Z., Gong, Y., Yu, G., and Wang, F. 2018. Coal char particle secondary fragmentation in an entrained-flow coal-water slurry gasifier. J. Energy Inst., 1–9. In press. doi:10.1016/j.joei.2018.04.001
  • Haschenko, A.A., Vecher, O.V., and Diskaeva, E.I. 2015. A study of temperature dependence of evaporation rate of liquids from a free surface and liquid boiling rate on a solid heating surface. Bulletin of the Altai State University, 1(89), 84–88.
  • Jian, W.C., Wen, J., Lu, S., and Guo, J. 2012. Single-step chemistry model and transport coefficient model for hydrogen combustion. Tech. Sci, 55, 2163–2168.
  • Kijo–Kleczkowska, A. 2011. Combustion of coal–water suspensions. Fuel, 90, 865–877. doi:10.1016/j.fuel.2010.10.034
  • Knyazeva, A.G., and Sorokova, S.N. 2006. Stability of the combustion wave in a viscoelastic medium to small one-dimensional perturbations. Combust. Explos. Shock Waves, 42(4), 411–420. doi:10.1007/s10573-006-0070-2
  • Konduri, M.K.R., and Fatehi, P. 2018. Adsorption and dispersion performance of oxidized sulfomethylated kraft lignin in coal water slurry. Fuel Process Technol., 176, 267–275. doi:10.1016/j.fuproc.2018.04.004
  • Kuznetsov, G.V., Salomatov, V.V., and Syrodoy, S.V. 2015a. Numerical simulation of ignition of particles of a coal-water fuel. Combust. Explos. Shock Waves, 51, 1–8. doi:10.1134/S0010508215040024
  • Kuznetsov, G.V., Salomatov, V.V., and Syrodoy, S.V. 2015b. The influence of heat transfer conditions on the parameters characterizing the ignition of coal-water fuel particles. Therm. Eng., 10, 16–21.
  • Leverett, M.C. 1939. Flow of oil-water mixtures through unconsolidated and sands. Trans. AIME, 132, 149. doi:10.2118/939149-G.
  • Lipovich, V.G. 1988. Chemistry and Processing of Coal, Chemistry, Moscow.
  • Maksimov, V.I., and Nagornova, T.A. 2014. Influence of heatsink from upper boundary on the industrial premises thermal conditions at gas infrared emitter operation. EPJ web of conferences. 76(01006).
  • Mantzaras, J. 2008. Catalytic combustion of syngas. Combust. Sci. Technol., 180, 1137. doi:10.1080/00102200801963342
  • Nikolaevsky, V.N., Basniev, K.S., and Gorbunov, A.T. 1970. Mechanics of Saturated Porous Media, Nedra, Moscow, p. 339.
  • Odeh, A.O., Ogbeide, S.E., and Okieimen, C.O. 2017. Coal pyrolysis: Comparative evaluation of the technical performance of two Southern Hemisphere demineralized bituminous coals. Therm. Sci. Eng. Prog., 3, 1–9. doi:10.1016/j.tsep.2017.05.007
  • Pomerantsev, V.V. 1986. Fundamentals of the Practical Theory of Combustion, Energoatomizdat, Moscow.
  • Rashkovsky, S.A., Milyokhin Yu, M., Klyuchnikov, A.N., and Fedorychev, A.V. 2009. Effect of tension of a composite propellant on its burning rate. Combust. Explos. Shock Waves, 45(6), 678–685. doi:10.1007/s10573-009-0084-7
  • Roache, P.J. 1976. Computational Fluid Dynamics, Hermosa Publishers, Albuquerque.
  • Salomatov, V.V., Kuznetsov, G.V., Syrodoy, S.V., and Gutareva, N.Y. 2016. Ignition of coal-water fuel particles under the conditions of intense heat. Appl. Therm. Eng., 106, 561–569. doi:10.1016/j.applthermaleng.2016.06.001
  • Samarskii, A.A. 1963. USSR. Comput. Math. Phys., 3(3), 572–619. doi:10.1016/0041-5553(63)90290-8
  • Sokolova, I.A. 1993. Mass diffusion models in multicomponent gas mixtures. Matem. Mod., 5(5), 71–91.
  • Spalding, D.B. 1978. Combustion and Mass Transfer, Elsevier, Amsterdam.
  • Stokes, G.G. 1851. On the effect of the internal friction of fluids on the motion of pendulums. Cambr. Phil. Trans., 5(9), 85.
  • Strakhov, V.L., Garashchenko, A.N., Kuznetsov, G.V., and Rudzinskii, V.P. 2001. Mathematical simulation of thermophysical and thermochemical processes during combustion of intumescent fire-protective coatings. Combust. Explos. Shock Waves, 37(2), 178–186. doi:10.1023/A:1017557726294
  • Syrodoi, S.V., Kuznetsova, G.V., Zakharevich, A.V., and Salomatov, V.V. 2017. Influence of the temperature dependence of the thermophysical properties of coal–water fuel on the conditions and characteristics of ignition. Solid Fuel Chem., 51(3), 160–165. doi:10.3103/S0361521917030107
  • Syrodoy, S.V., Kuznetsov, G.V., Zhakharevich, A.V., Gutareva, N.Y., and Salomatov, V.V. 2017. The influence of the structure heterogeneity on the characteristics and conditions of the coal–water fuel particles ignition in high temperature environment. Combust. Flame, 80, 196–206. doi:10.1016/j.combustflame.2017.02.003
  • Tavangar, S., Hashemabadi, S.H., and Saberimoghadam, A. 2015. CFD simulation for secondary breakup of coal–water slurry drops using open FOAM. Fuel Process Technol., 132, 153–163. doi:10.1016/j.fuproc.2014.12.037
  • Vershinina, K.Y., Glushkov, D.O., Kuznetsov, G.V., and Strizhak, P.A. 2016. Differences in the ignition characteristics of coal–water slurries and composite liquid fuel. Solid Fuel Chem., 50(2), 88–101. doi:10.3103/S0361521916020117
  • Wang, R., Zhao, Z., Yin, Q., Xiang, Y., and Wang, Z. 2018. Additive adsorption behavior of sludge and its influence on the slurrying ability of coal–sludge–slurry and petroleum coke–sludge–slurry. Appl. Therm. Eng., 128, 1555–1564. doi:10.1016/j.applthermaleng.2017.09.133
  • Zakharevich, A.V., Kuznetsova, G.V., Salomatov, V.V., Strizhaka, P.A., and Syrodoy, S.V. 2016. Initiation of combustion of coal particles coated with a water film in a high-temperature air flow. Combust. Explos. Shock Waves, 52(5), 550–561. doi:10.1134/S0010508216050063
  • Zakharevich, A.V., Salomatov, V.V., Strizhak, P.A., and Syrodoi, S.V. 2016. Ignition of the drops of coal–water fuel in a flow of air. Solid Fuel Chem., 50(3), 163–166. doi:10.3103/S0361521916030125
  • Zhang, X., Wang, T., Xu, J., Zheng, S., and Hou, X.J. 2018. Study on flame-vortex interaction in a spark ignition engine fueled with methane/carbon dioxide gases. J. Energy Inst., 91, 133–144. doi:10.1016/j.joei.2016.09.005
  • Zhao, H., Hou, Y.-B., Liu, H.-F., Tian, X.-S., Xu, J.-L., Li, W.-F., Liu, Y., Wu, F.-Y., Zhang, J., and Lin, K.-F. 2014. Influence of rheological properties on air-blast atomization of coal water slurry. J. Nonnewton Fluid Mech., 211, 1–15. doi:10.1016/j.jnnfm.2014.06.007
  • Zhu, M., Zhang, Z., Zhang, Y., Liu, P., and Zhang, D. 2017a. An experimental investigation into the ignition and combustion characteristics of single droplets of biochar water slurry fuels in air. Appl. Energy, 185, 2160–2167. doi:10.1016/j.apenergy.2015.11.087
  • Zhu, M., Zhang, Z., Zhang, Y., Setyawan, H., Liu, P., and Zhang, D. 2017b. An experimental study of the ignition and combustion characteristics of single droplets of biochar-glycerol-water slurry fuels. Proc. Combust. Inst., 36, 2475–2482. doi:10.1016/j.proci.2016.07.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.