178
Views
2
CrossRef citations to date
0
Altmetric
Articles

Performance of Parallel Chemistry Acceleration Algorithm in Simulations of Gaseous Detonation: Effects of Fuel Type and Numerical Scheme Resolution

, &
Pages 2185-2207 | Received 21 Jul 2018, Accepted 12 Nov 2018, Published online: 03 Dec 2018

References

  • Balsara, D.S., and Shu, C.W. 2000. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comp. Physics, 160(2), 405–452. doi:10.1006/jcph.2000.6443.
  • Blasco, J.A., Fueyo, N., Dopazo, C., et al. 1998. Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural network. Combust. Flame, 113(1–2), 38–52. doi:10.1016/S0010-2180(97)00211-3.
  • Brown, P.N., Byrne, G.D., and Hindmarsh, A.C. 1988. VODE: a variable-coefficient ODE solver. SIAM J. Sci. And Stat. Comp., 10(5), 1038–1051. doi:10.1137/0910062.
  • Chen, J.Y., Kollmann, W., and Dibble, R.W. 1989. PDF modeling of turbulent non-premixed methane jet flames. Combust. Sci. Tech., 64(4–6), 315–346. doi:10.1080/00102208908924038.
  • Christo, F.C., Masri, A.R., and Nebot, E.M. 1996. Artificial neural network implementation of chemistry with PDF simulation of H2/CO2 flames. Combust. Flame, 106(4), 406–427. doi:10.1016/0010-2180(95)00250-2.
  • Dong, G., and Fan, B.C. 2009. Chemistry acceleration modeling of detonation based on the dynamical storage/deletion algorithm. Combust. Sci. Tech., 181(9), 1207–1216. doi:10.1080/00102200903181744.
  • Dong, G., Fan, B.C., and Chen, Y.L. 2007. Acceleration of chemistry computations in two-dimensional detonation induced by shock focusing using reduced ISAT. Combust. Theo. Modeling, 11(5), 823–837. doi:10.1080/13647830701316657.
  • Dong, G., Fan, B.C., and Ye, J.F. 2008. Numerical investigation of ethylene flame bubble instability induced by shock waves. Shock Waves, 17(6), 409–419. doi:10.1007/s00193-008-0124-3.
  • Fooladgar, E., Chan, C.K., and Nogenmyr, K.J. 2017. An accelerated computation of combustion with finite-rate chemistry using LES and an open source library for in-situ-adaptive tabulation. Comp. Fluids, 146, 42–50. doi:10.1016/j.compfluid.2017.01.008.
  • Gamezo, V.N., Desbordes, D., and Oran, E.S. 1999a. Formation and evolution of two-dimensional cellular detonations. Combust. Flame, 116(1–2), 154–165. doi:10.1016/S0010-2180(98)00031-5.
  • Gamezo, V.N., Desbordes, D., and Oran, E.S. 1999b. Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves, 9(1), 11–17. doi:10.1007/s001930050134.
  • Heye, C., Raman, V., and Masri, A.R. 2015. Influence of spray/combustion interactions on auto-ignition of methanol spray flames. Proc. Combust. Inst., 35(2), 1639–1648. doi:10.1016/j.proci.2014.06.087.
  • Hiremath, V., Lantz, S.R., Wang, H., et al. 2012. Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion. Combust. Flame, 159(10), 3096–3109. doi:10.1016/j.combustflame.2012.04.013.
  • Hiremath, V., Lantz, S.R., Wang, H., et al. 2013. Large-scale parallel simulations of turbulent combustion using combined dimension reduction and tabulation of chemistry. Proc. Combust. Inst., 34(1), 205–215. doi:10.1016/j.proci.2012.06.004.
  • Hiremath, V., Ren, Z.Y., and Pope, S.B. 2011. Combined dimension reduction and tabulation strategy using ISAT–RCCE–GALI for the efficient implementation of combustion chemistry. Combust. Flame, 158(11), 2113–2127. doi:10.1016/j.combustflame.2011.04.010.
  • Jiang, G.S., and Shu, C.W. 1995. Efficient implementation of weighted ENO schemes. J. Comp. Physics, 126(1), 202–228. doi:10.1006/jcph.1996.0130.
  • John, S.H.L. 2008. Detonation Phenomena, Cambridge University Press, Cambridge, UK.
  • Kee, R.J., Grcar, J.F., Smooke, M.D., and Miller, J.A. 1992. A fortran program for modelling steady laminar one- dimensional premixed flame, Report. SAND85-8240. UC-401, Sandia National Laboratories, New Mexico.
  • Law, C.K. 2006. Combustion Physics, Cambridge University Press, Cambridge, UK, pp. 660.
  • Li, C.Y., Appari, S., Tanaka, R., et al. 2015. A CFD study on the reacting flow of partially combusting hot coke oven gas in a bench-scale reformer. Fuel, 159, 590–598. doi:10.1016/j.fuel.2015.07.023.
  • Liang, Y.W., Pope, S.B., and Pepiot, P. 2015. A pre-partitioned adaptive chemistry methodology for the efficient implementation of combustion chemistry in particle PDF methods. Combust. Flame, 162(9), 3236–3253. doi:10.1016/j.combustflame.2015.05.012.
  • Lu, L., Lantz, S.R., Ren, Z., et al. 2009. Computationally efficient implementation of combustion chemistry in parallel PDF calculations. J. Comp. Physics, 228(15), 5490–5525. doi:10.1016/j.jcp.2009.04.037.
  • Lu, L., Ren, Z., Lantz, S.R., et al. 2005. Investigation of strategies for the parallel implementation of ISAT in LES/FDF/ISAT computations, In Fourth Joint Meeting of the US Sections of the Combustion Institute, March 20–23; Drexel University, Philadelphia, PA.
  • Pope, S.B. 1997. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theo. Modelling, 1(1), 41–63. doi:10.1080/713665229.
  • Rabitz, H., and Aliş, F.Ö. 1999. General foundations of high‐dimensional model representations. J. Math. Chem., 25(2), 197–233. doi:10.1023/A:1019188517934.
  • Ren, Z.Y., Goldin, G.M., et al. 2013. Simulations of a turbulent non-premixed flame using combined dimension reduction and tabulation for combustion chemistry. Fuel, 105(2), 636–644. doi:10.1016/j.fuel.2012.08.018.
  • Tan, S., et al. 2012. Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. J. Comput. Phys., 231(6), 2510–2527. doi:10.1016/j.jcp.2011.11.037.
  • Tonse, S.R., Moriarty, N.W., Brown, N.J., et al. 1998. PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics. Israel J. Chem., 39(1), 97–106. doi:10.1002/ijch.199900010.
  • Turányi, T. 1994. Parameterization of reaction mechanisms using orthonormal polynomials. Comp. Chem., 18(1), 45–54. doi:10.1016/0097-8485(94)80022-7.
  • Voitsekhovskii, B.V., Mitrofanov, V.V., and Topchiyan, M.E. 1969. Structure of the detonation front in gases (survey). Combust. Explos. Shock Waves, 5(3), 267–273. doi:10.1007/BF00748606.
  • Wang, C., et al. 2012. Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys., 231(2), 653–665. doi:10.1016/j.jcp.2011.10.002.
  • Wang, C., et al. 2013. High resolution WENO simulation of 3D detonation waves. Combust. Flame, 160(2), 447–462. doi:10.1016/j.combustflame.2012.10.002.
  • Wang, C., et al. 2015. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation. J. Comput. Phys., 298, 161–175. doi:10.1016/j.jcp.2015.06.001.
  • Warnatz, J., Mass, U., and Dibble, R.W. 2006. Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation, 4thedition, Springer, Berlin.
  • Wei, H., Zhou, L., Zhou, H., et al. 2017. Toward efficient chemistry calculations in engine simulations through static adaptive acceleration. Combust. Sci. Tech., 4(4), 623–642. doi:10.1080/00102202.2016.1229312.
  • Williams, D.N., Bauwens, L., and Oran, E.S. 1996. Detailed structure and propagation of three-dimensional detonations. Symp. (Int.) Combust., 26(2), 2991–2998. doi:10.1016/S0082-0784(96)80142-1.
  • Wolański, P. 2013. Detonative propulsion. Proc. Combust. Inst., 34(1), 125–158. doi:10.1016/j.proci.2012.10.005.
  • Wu, J.T., Dong, G., and Li, B.M. 2018. Parallel chemistry acceleration algorithms based on ISAT method in gaseous detonation computations. Comp. Fluids, 167, 265–284. doi:10.1016/j.compfluid.2018.03.036.
  • Yang, B., and Pope, S.B. 1998. Treating chemistry in combustion with detailed mechanisms—in situ adaptive tabulation in principal directions—premixed combustion. Combust. Flame, 112(1–2), 85–112. doi:10.1016/S0010-2180(97)81759-2.
  • Zhou, L., and Wei, H.Q. 2016. Chemistry acceleration with tabulated dynamic adaptive chemistry in a realistic engine with a primary reference fuel. Fuel, 171, 186–194. doi:10.1016/j.fuel.2015.12.055.
  • Zhou, L., and Wei, H.Q. 2017. An investigation of in situ adaptive tabulation for premixed and non-premixed combustion engine simulations with primary reference fuel mechanism. Appl. Therm. Eng., 111, 526–536. doi:10.1016/j.applthermaleng.2016.09.141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.