344
Views
3
CrossRef citations to date
0
Altmetric
Articles

Experimental Investigation of Soot Oxidation under Well-Controlled Conditions in a High-Temperature Flow Reactor

, , &
Pages 1499-1519 | Received 10 Sep 2018, Accepted 28 Nov 2018, Published online: 08 Mar 2019

References

  • Abid, A.D., Heinz, N., Tolmachoff, E.D., Phares, D.J., Campbell, C.S., and Wang, H. 2008. On evolution of particle size distribution functions of incipient soot in premixed ethylene–oxygen–argon flames. Combust. Flame, 154, 775–788. doi:10.1016/j.combustflame.2008.06.009
  • Apicella, B., Ciajolo, A., Tregrossi, A., Abrahamson, J., Vander Wal, R.L., and Russo, C. 2018. HRTEM and EELS investigations of flame-formed soot nanostructure. Fuel, 225, 218–224. doi:10.1016/j.fuel.2018.03.091
  • Bockhorn, H. Ed. 1994. Soot Formation in Combustion: Mechanisms and Models, Springer, Berlin.
  • Cadman, P., and Denning, R.J. 1996. Oxidation rates of soot particulates by oxygen in the temperature range 1500–3500 K determined using a shock tube. J. Chem. Soc., Faraday Trans., 92, 4159–4165. doi:10.1039/FT9969204159
  • Calcote, H.F. 1981. Mechanisms of soot nucleation in flames - A critical review. Combust. Flame, 42, 215–242. doi:10.1016/0010-2180(81)90159-0
  • Camacho, J., Tao, Y., and Wang, H. 2015. Kinetics of nascent soot oxidation by molecular oxygen in a flow reactor. Proc. Combust. Inst., 35, 1887–1894. doi:10.1016/j.proci.2014.05.095
  • Chan, M.-L., Moody, K.N., Mullins, J.R., and Williams, A. 1987. Low-temperature oxidation of soot. Fuel, 66, 1694–1698. doi:10.1016/0016-2361(87)90365-6
  • Chapman, S., and Cowling, T.G. 1970. The Mathematical Theory of Non-Uniform Gases, 3rd, Cambridge Univerity Press, Cambridge.
  • Echavarria, C.A., Jaramillo, I.C., Sarofim, A.F., and Lighty, J.S. 2011. Studies of soot oxidation and fragmentation in a two-stage burner under fuel-lean and fuel-rich conditions. Proc. Combust. Inst., 33, 659–666. doi:10.1016/j.proci.2010.06.149
  • Echavarria, C.A., Jaramillo, I.C., Sarofim, A.F., and Lighty, J.S. 2012. Burnout of soot particles in a two-stage burner with a JP-8 surrogate fuel. Combust. Flame, 159, 2441–2448. doi:10.1016/j.combustflame.2012.03.011
  • Fenimore, C.P., and Jones, G.W. 1967. Oxidation of soot by hydroxyl radicals. J. Phys. Chem., 71, 593–597. doi:10.1021/j100862a021
  • Frenklach, M., Liu, Z., Singh, R.I., Galimova, G.R., Azyazov, V.N., and Mebel, A.M. 2018. Detailed, sterically-resolved modeling of soot oxidation: role of O atoms, interplay with particle nanostructure, and emergence of inner particle burning. Combust. Flame, 188, 284–306. doi:10.1016/j.combustflame.2017.10.012
  • Garo, A., Prado, G., and Lahaye, J. 1990. Chemical aspects of soot particles oxidation in a laminar methane-air diffusion flame. Combust. Flame, 79, 226–233. doi:10.1016/0010-2180(90)90134-D
  • Ghazi, R., Tjong, H., Soewono, A., Rogak, S.N., and Olfert, J.S. 2013. Mass, mobility, volatility, and morphology of soot particles generated by a McKenna and inverted burner. Aerosol Sci. Technol., 47, 395–405. doi:10.1080/02786826.2012.755259
  • Ghiassi, H., Jaramillo, I.C., and Lighty, J.S. 2016. Kinetics of soot oxidation by molecular oxygen in a premixed flame. Energy Fuels, 30, 3463–3472. doi:10.1021/acs.energyfuels.5b02942
  • Gilot, P., Bonnefoy, F., Marcuccilli, F., and Prado, G. 1993. Determination of kinetic data for soot oxidation. Modeling of competition between oxygen diffusion and reaction during thermogravimetric analysis. Combust. Flame, 95, 87–100. doi:10.1016/0010-2180(93)90054-7
  • Guo, H., Anderson, P.M., and Sunderland, P.B. 2016. Optimized rate expressions for soot oxidation by OH and O2. Fuel, 172, 248–252. doi:10.1016/j.fuel.2016.01.030
  • Higgins, K.J., Jung, H., Kittelson, D.B., Roberts, J.T., and Zachariah, M.R. 2002. Size-selected nanoparticle chemistry: kinetics of soot oxidation. J. Phys. Chem. A, 106, 96–103. doi:10.1021/jp004466f
  • Higgins, K.J., Jung, H., Kittelson, D.B., Roberts, J.T., and Zachariah, M.R. 2003. Kinetics of diesel nanoparticle oxidation. Environ. Sci. Technol., 37, 1949–1954. doi:10.1021/es0261269
  • Hinds, W.C. 2011. Physical and Chemical Processes in Aerosol Systems. In Kulkarni, P., Baron, P.A., and Willeke, K. Eds., Aerosol Measurement, 3rd, Wiley, Hoboken, pp. 31–40.
  • Jaramillo, I.C., Gaddam, C.K., Vander Wal, R.L., Huang, C.-H., Levinthal, J.D., and Lighty, J.S. 2014. Soot oxidation kinetics under pressurized conditions. Combust. Flame, 161, 2951–2965. doi:10.1016/j.combustflame.2014.04.016
  • Jaramillo, I.C., Gaddam, C.K., Vander Wal, R.L., and Lighty, J.S. 2015. Effect of nanostructure, oxidative pressure and extent of oxidation on model carbon reactivity. Combust. Flame, 162, 1848–1856. doi:10.1016/j.combustflame.2014.12.006
  • Jung, H., Kittelson, D.B., and Zachariah, M.R. 2004. Kinetics and visualization of soot oxidation using transmission electron microscopy. Combust. Flame, 136, 445–456. doi:10.1016/j.combustflame.2003.10.013
  • Kathrotia, T., Oßwald, P., Köhler, M., Slavinskaya, N., and Riedel, U. 2018. Experimental and mechanistic investigation of benzene formation during atmospheric pressure flow reactor oxidation of n-hexane, n-nonane, and n-dodecane below 1200 K. Combust. Flame, 194, 426–438. doi:10.1016/j.combustflame.2018.05.027
  • Khosousi, A., and Dworkin, S.B. 2015. Detailed modelling of soot oxidation by O2 and OH in laminar diffusion flames. Proc. Combust. Inst., 35, 1903–1910. doi:10.1016/j.proci.2014.05.152
  • Kim, C.H., Xu, F., and Faeth, G.M. 2008. Soot surface growth and oxidation at pressures up to 8.0 atm in laminar nonpremixed and partially premixed flames. Combust. Flame, 152, 301–316. doi:10.1016/j.combustflame.2007.10.016
  • Köhler, M., Oßwald, P., Krüger, D., and Whitside, R. 2018. Combustion chemistry of fuels: quantitative speciation data obtained from an atmospheric high-temperature flow reactor with coupled molecular-beam mass spectrometer. J. Vis. Exp., 132, e56965. doi:10.3791/56965
  • Lee, K.W., and Chen, H. 1984. Coagulation rate of polydisperse particles. Aerosol Sci. Technol., 3, 327–334. doi:10.1080/02786828408959020
  • Liu, C., Zhu, L., Gao, Z., Li, H., and Huang, Z. 2018. Effects of molecular O2 and NO2 on particle size distribution, morphology and nanostructure of diffusion flame soot oxidized in a flow reactor. Fuel, 234, 335–346. doi:10.1016/j.fuel.2018.07.039
  • Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y.-G., and Wang, L. 2017. Review of modern low emissions combustion technologies for aero gas turbine engines. Prog. Aerosp. Sci., 94, 12–45. doi:10.1016/j.paerosci.2017.08.001
  • Ma, X., Zangmeister, C.D., and Zachariah, M.R. 2013. Soot oxidation kinetics: A comparison study of two tandem ion-mobility methods. J. Phys. Chem. C, 117, 10723–10729. doi:10.1021/jp400477v
  • Maricq, M.M. 2004. Size and charge of soot particles in rich premixed ethylene flames. Combust. Flame, 137, 340–350. doi:10.1016/j.combustflame.2004.01.013
  • Maricq, M.M. 2007. Coagulation dynamics of fractal-like soot aggregates. J. Aerosol Sci., 38, 141–156. doi:10.1016/j.jaerosci.2006.11.004
  • Maricq, M.M. 2009. An examination of soot composition in premixed hydrocarbon flames via laser ablation particle mass spectrometry. J. Aerosol Sci., 40, 844–857. doi:10.1016/j.jaerosci.2009.07.001
  • Maricq, M.M., Harris, S.J., and Szente, J.J. 2003. Soot size distributions in rich premixed ethylene flames. Combust. Flame, 132, 328–342. doi:10.1016/S0010-2180(02)00502-3
  • Maricq, M.M., and Xu, N. 2004. The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust. J. Aerosol Sci., 35, 1251–1274. doi:10.1016/j.jaerosci.2004.05.002
  • Nagle, J., and Strickland-Constable, R.F. 1962. Oxidation of carbon between 1000–2000°C. Proceedings of the Fifth Conference on Carbon, Pergamon, pp. 154–164.
  • Neoh, K.G., Howard, J.B., and Sarofim, A.F. 1981. Soot oxidation in flames. In Siegla, D.C., and Smith, G.W. Eds., Particulate Carbon, Springer, Boston, pp. 261–282.
  • Neoh, K.G., Howard, J.B., and Sarofim, A.F. 1985. Effect of oxidation on the physical structure of soot. Proc. Combust. Inst., 20, 951–957. doi:10.1016/S0082-0784(85)80584-1
  • Nienow, A.M., Roberts, J.T., and Zachariah, M.R. 2005. Surface chemistry of nanometer-sized aerosol particles: reactions of molecular oxygen with 30 nm soot particles as a function of oxygen partial pressure. J. Phys. Chem. B, 109, 5561–5568. doi:10.1021/jp045418o
  • Öktem, B., Tolocka, M.P., Zhao, B., Wang, H., and Johnston, M.V. 2005. Chemical species associated with the early stage of soot growth in a laminar premixed ethylene-oxygen-argon flame. Combust. Flame, 142, 364–373. doi:10.1016/j.combustflame.2005.03.016
  • Omidvarborna, H., Kumar, A., and Kim, D.-S. 2015. Recent studies on soot modeling for diesel combustion. Renew. Sustain. Energy Rev., 48, 635–647. doi:10.1016/j.rser.2015.04.019
  • Oßwald, P., and Köhler, M. 2015. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems. Rev. Sci. Instrum., 86, 105109. doi:10.1063/1.4932608
  • Oßwald, P., Whitside, R., Schäffer, J., and Köhler, M. 2017. An experimental flow reactor study of the combustion kinetics of terpenoid jet fuel compounds: farnesane, p-menthane and p-cymene. Fuel, 187, 43–50. doi:10.1016/j.fuel.2016.09.035
  • Park, C., and Appleton, J.P. 1973. Shock-tube measurements of soot oxidation rates. Combust. Flame, 20, 369–379. doi:10.1016/0010-2180(73)90029-1
  • Puri, R., Santoro, R.J., and Smyth, K.C. 1994. The oxidation of soot and carbon monoxide in hydrocarbon diffusion flames. Combust. Flame, 97, 125–144. doi:10.1016/0010-2180(94)90001-9
  • Roth, P., Brandt, O., and Von Gersum, S. 1991. High temperature oxidation of suspended soot particles verified by CO and CO2 measurements. Proc. Combust. Inst., 23, 1485–1491. doi:10.1016/S0082-0784(06)80417-0
  • Shaddix, C.R., and Williams, T.C. 2009. Soot structure and dimensionless extinction coefficient in diffusion flames: implications for index of refraction. In Bockhorn, H., D`Anna, A., Sarofim, A.F., and Wang, H. Eds., Combustion Generated Fine Carbonaceous Particles, KIT Scientific Publishing, Karlsruhe, pp. 17–33.
  • Stanmore, B.R., Brilhac, J.F., and Gilot, P. 2001. The oxidation of soot: A review of experiments, mechanisms and models. Carbon, 39, 2247–2268. doi:10.1016/S0008-6223(01)00109-9
  • Stirn, R., Baquet, T.G., Kanjarkar, S., Meier, W., Geigle, K.P., Grotheer, H.H., Wahl, C., and Aigner, M. 2009. Comparison of particle size measurements with laser-induced incandescence, mass spectroscopy, and scanning mobility particle sizing in a laminar premixed ethylene/air flame. Combust. Sci. Technol., 181, 329–349. doi:10.1080/00102200802483498
  • Vander Wal, R.L., and Tomasek, A.J. 2003. Soot oxidation: dependence upon initial nanostructure. Combust. Flame, 134, 1–9. doi:10.1016/S0010-2180(03)00084-1
  • Walls, J.R., and Strickland-Constable, R.F. 1964. Oxidation of carbon between 1000-2400°C. Carbon, 1, 333–338. doi:10.1016/0008-6223(64)90288-X
  • Zhao, B., Uchikawa, K., and Wang, H. 2007. A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy. Proc. Combust. Inst., 31, 851–860. doi:10.1016/j.proci.2006.08.064
  • Zhao, B., Yang, Z., Li, Z., Johnston, M.V., and Wang, H. 2005. Particle size distribution function of incipient soot in laminar premixed ethylene flames: effect of flame temperature. Proc. Combust. Inst., 30, 1441–1448. doi:10.1016/j.proci.2004.08.104
  • Zhao, B., Yang, Z., Wang, J., Johnston, M.V., and Wang, H. 2003. Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer. Aerosol Sci. Technol., 37, 611–620. doi:10.1080/02786820300908

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.