273
Views
9
CrossRef citations to date
0
Altmetric
Articles

Impact of Combustion Modeling on the Spectral Response of Heat Release in LES

, ORCID Icon, , , , & show all
Pages 1520-1540 | Received 21 Sep 2018, Accepted 07 Dec 2018, Published online: 24 Dec 2018

References

  • Bailly, C., Bogey, C., and Candel, S. 2010. Modelling of sound generation by turbulent reacting flows. Int. J. Aeroacoust., 9, 461–490. doi:10.1260/1475-472X.9.4-5.461
  • Boger, M., Veynante, D., Boughanem, H., and Trouve, A. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In Twenty-Seventh Symposium (International) on Combustion, The University of Colorado at Boulder, Boulder, CO, August 2–7; The Combustion Institute, Pittsburgh, pp. 917–925.
  • BP energy outlook. 2016. Technical report. British Petroleum.
  • Colin, O., Ducros, F., Veynante, D., and Poinsot, T. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids., 12, 1843–1863. doi:10.1063/1.870436
  • Crighton, D.G., Dowling, A.P., Ffowcs Williams, J.E., Heckl, M.A., and Leppington, F.A. 1992. Modern Methods in Analytical Acoustics, Springer, Berlin.
  • Dowling, A.P., and Mahmoudi, Y. 2015. Combustion noise. Proc. Combust. Inst., 35, 65–100. doi:10.1016/j.proci.2014.08.016
  • Ferziger, J.H., and Perić, M. 2002. Computational Methods for Fluid Dynamics, Springer-Verlag Berlin Heidelberg, Germany.
  • Fiorinaa, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdic, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., Trisjono, P., Kleinheinz, K., Kang, S., Pitsch, H., Proch, F., Cavallo Marincola, F., and Kempf, A. 2015. Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combust. Flame., 162, 4264–4282. doi:10.1016/j.combustflame.2015.07.036
  • Flohr, P., and Pitsch, H. 2000. A turbulent flame speed closure model for LES of industrial burner flows. In Proceedings of the Summer Program, Stanford Summer Program, July 2–27; Stanford University, Stanford, CA, pp. 169–179.
  • Fröhlich, J. 2006. Large Eddy Simulation Turbulenter Strömungen, Teubner Verlag, Germany.
  • Geiser, G., Hosseinzadeh, A., Nawroth, H., Zhang, F., Bockhorn, H., Habisreuther, P., Janicka, J., Paschereit, C.O., and Schröder, W. 2014. Thermoacoustics of a turbulent premixed flame. AIAA Paper., 44, 2014–2476.
  • Hirsch, C., Wäsle, J., Winkler, A., and Sattelmayer, T. 2007. A spectral model for the sound pressure from turbulent premixed combustion. Proc. Combust. Inst., 31, 1435–1441. doi:10.1016/j.proci.2006.07.154
  • Hosseinzadeh, A., Sadiki, A., Di Mar, F., and Janicka, J. 2017. Effects of subgrid scale and combustion modelling on flame structure of a turbulent premixed flame within LES and tabulated chemistry framework. Combust. Theory Modell., 21, 838–863. doi:10.1080/13647830.2017.1305514
  • Huang, Y., Sung, H.G., Hsieh, S.Y., and Yang, V. 2003. Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor. J. Prop. Power., 19, 782–794. doi:10.2514/2.6194
  • Klein, M., Sadiki, A., and Janicka, J. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys., 286, 652–665. doi:10.1016/S0021-9991(03)00090-1
  • Komen, E., Shams, A., Camilo, L., and Koren, B. 2014. Quasi-DNS capabilities of OpenFOAM for different mesh types. Comput. Fluids., 96, 87–104. doi:10.1016/j.compfluid.2014.02.013
  • Legier, J.P., Poinsot, T., and Veynante, D. 2000. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In Proceedings of the Summer Program, Stanford University, Stanford, CA; Center for Turbulence Research, pp. 157–168.
  • Lieuwen, T.C. 2012. Unsteady Combustor Physics, Cambridge University Press, Cambridge, UK.
  • Lieuwen, T.C., and Yang, V. 2005. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling, American Institute of Aeronautics and Astronautics, Reston, VA.
  • Möller, S.I., Lundgren, E., and Fureby, C. 1996. Large eddy simulation of unsteady combustion. Proc. Combust. Inst., 26, 241–248. doi:10.1016/S0082-0784(96)80222-0
  • Nawroth, H., Paschereit, C.O., Zhang, F., Habisreuther, P., and Bockhorn, H. 2013. Flow investigation and acoustic measurements of an unconfined turbulent premixed jet flame. AIAA Paper., 43, 2013–2459.
  • OpenFOAM. 2014. The open source CFD toolbox. User Guide.
  • Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge, UK.
  • Pitsch, H. 2005. A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame., 143, 587–598. doi:10.1016/j.combustflame.2005.08.031
  • Pitsch, H. 2006. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech., 38, 453–82. doi:10.1146/annurev.fluid.38.050304.092133
  • Poinsot, T., and Lele, S.K. 1992. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101, 104–129. doi:10.1016/0021-9991(92)90046-2
  • Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion, R.T. Edwards Inc., Philadelphia, USA.
  • Polifke, W., Flohr, P., and Brandt, M. 2002. Modeling of inhomogeneously premixed combustion with an extended TFC model. J. Eng. Gas Turbines Power, 124, 58–65. doi:10.1115/1.1394964
  • Schmid, H.P., Habisreuther, P., and Leuckel, W. 1998. A model for calculating heat release in premixed turbulent flames. Combust. Flame., 113, 79–91. doi:10.1016/S0010-2180(97)00193-4
  • Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.U., Krebs, W., Prade, B., Kaufmann, P., and Veynante, D. 2004a. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame., 137, 489–505. doi:10.1016/j.combustflame.2004.03.008
  • Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P., and Veynante, D. 2004b. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame, 137, 489–505. doi:10.1016/j.combustflame.2004.03.008
  • Thiesset, F., Halter, F., Bariki, C., Lapeyre, C., Chauveau, C., Gökalp, I., Selle, L., and Poinsot, T. 2017. Isolating strain and curvature effects in premixed flame/vortex interactions. J. Fluid Mech., 831, 618–654. doi:10.1017/jfm.2017.641
  • Vo, S., Stein, O.T., Kronenburg, A., and Cleary, M.J. 2017. Assessment of mixing time scales for a sparse particle method. Combust. Flame, 179, 280–299. doi:10.1016/j.combustflame.2017.02.017
  • Wang, P., Fröhlich, J., Maas, U., He, Z.X., and Wang, C.J. 2016. A detailed comparison of two sub-grid scale combustion models via large eddy simulation of the PRECCINSTA gas turbine model combustor. Combust. Flame, 164, 329–345.
  • Wang, S., Yang, V., Hsiao, G., and Hsien, S.-Y. 2007. Large-eddy simulations of gas-turbine swirl injector flow dynamics. J. Fluid Mech., 583, 99–122. doi:10.1017/S0022112007006155
  • Zhang, F., Bonart, H., Habisreuther, P., Bockhorn, H. 2014. in: Nagel, W.E., Kröner, D.H., and Resch, M.M. Eds. Impact of grid refinement on turbulent combustion and combustion noise modeling with Large Eddy Simulation. High Performance Computing in Science and Engineering ‘13, Springer Berlin Heidelberg, Germany, pp. 259–274.
  • Zhang, F., Bonart, H., Zirwes, T., Habisreuther, P., Bockhorn, H., Zarzalis, N. 2015. Direct numerical simulation of chemically reacting flows with the Public Domain Code OpenFOAM. In Nagel, W.E., Kröner, D.H., and Resch, M.M. Eds. High Performance Computing in Science and Engineering ’14, Springer Berlin Heidelberg, Germany, pp. 221–236.
  • Zhang, F., Habisreuther, P., Bockhorn, H., Nawroth, H., and Paschereit, C.O. 2013. On prediction of combustion generated noise with the turbulent heat release rate. Acta Acust. United Ac., 99, 940–951. doi:10.3813/AAA.918673
  • Zhang, F., Habisreuther, P., Hettel, M., and Bockhorn, H. 2009. Modelling of a premixed swirl-stabilized flame using a turbulent flame speed closure model in LES. Flow Turbul. Combust., 82, 537–551. doi:10.1007/s10494-008-9175-x
  • Zhang, F., Habisreuther, P., Hettel, M., and Bockhorn, H. 2012. Numerical computation of combustion induced noise using compressible LES and hybrid CFD/CAA methods. Acta Acust. United Ac., 98, 120–134. doi:10.3813/AAA.918498
  • Zhang, F., Zirwes, T., Habisreuther, P., and Bockhorn, H. 2017a. Effect of unsteady stretching on the flame local dynamics. Combust. Flame, 175, 170–179. doi:10.1016/j.combustflame.2016.05.028
  • Zhang, F., Zirwes, T., Nawroth, H., Habisreuther, P., Bockhorn, H., and Paschereit, C.O. 2017b. Combustion-generated noise: an environment-related issue for future combustion systems. Energy Technol., 5, 1045–1054. doi:10.1002/ente.v5.7
  • Zimont, V.L., and Lipatnikov, A.N. 1995. A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep., 14, 993–1025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.