323
Views
13
CrossRef citations to date
0
Altmetric
Articles

A Numerical Study on the Effect of Temperature and Composition on the Flammability of Methane–Hydrogen Sulfide Mixtures

ORCID Icon, , & ORCID Icon
Pages 1541-1557 | Received 24 Aug 2018, Accepted 28 Dec 2018, Published online: 06 Jan 2019

References

  • Abián, M., Cebrián, M., Millera, Á., Bilbao, R., and Alzueta, M.U. 2015. CS2 and COS conversion under different combustion conditions. Combust. Flame, 162, 2119–2127. doi:10.1016/j.combustflame.2015.01.010
  • Adewale, R., Salem, D.J., Berrouk, A.S., and Dara, S. 2016. Simulation of hydrogen production from thermal decomposition of hydrogen sulfide in sulfur recovery units. J. Clean. Prod., 112, 4815–4825. doi:10.1016/j.jclepro.2015.08.021
  • Akram, M., Saxena, P., and Kumar, S. 2012. Laminar burning velocity of methane−air mixtures at elevated temperatures. Energy Fuels, 26, 5509–5518. doi:10.1021/ef301000k
  • Bagheri, M., Alamdari, A., and Davoudi, M. 2016. Quantitative risk assessment of sour gas transmission pipelines using CFD. J Nat Gas Sci Eng, 31, 108–118. doi:10.1016/j.jngse.2016.02.057
  • Barba, D., Cammarota, F., Vaiano, V., Salzano, E., and Palma, V. 2017. Experimental and numerical analysis of the oxidative decomposition of H2S. Fuel, 198, 68–75. doi:10.1016/j.fuel.2016.12.038
  • Bingue, J.P., Saveliev, A.V., Fridman, A.A., and Kennedy, L.A. 2002. Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. Int. J. Hydrogen Energy, 27, 643–649. doi:10.1016/S0360-3199(01)00174-4
  • Bongartz, D., and Ghoniem, A.F. 2015. Impact of sour gas composition on ignition delay and burning velocity in air and oxy-fuel combustion. Combust. Flame, 162, 2749–2757. doi:10.1016/j.combustflame.2015.04.014
  • Burcat, A., and Ruscic, B. 2005. Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. U. S. Department of Energy ANL-05/20, TAE 960.
  • Cerru, F.G., Kronenburg, A., and Lindstedt, R.P. 2005. A systematically reduced reaction mechanism for sulphur oxidation. Proc. Combust. Inst., 30, 1227–1235. doi:10.1016/j.proci.2004.08.083
  • Chamberlin, D.S., and Clarke, D. 1928. Flame speed of hydrogen sulfide. Ind. Eng.Chem., 20, 1016–1018. doi:10.1021/ie50226a010
  • Chen, C.C., Liu, S.H., and Kang, X. 2018. Evaluating lower flammability limit of flammable mixtures using threshold temperature approach. Chem. Eng. Sci., 185, 84–91. doi:10.1016/j.ces.2018.04.011
  • Chin, H.S.F., Karan, K., Mehrotra, A.K., and Behie, L.A. 2001. The fate of methane in a claus plant reaction furnace. Can. J. Chem. Eng., 79, 482–490. doi:10.1002/cjce.5450790404
  • Cohen, L. 1955. Burning velocities of hydrogen sulfide in air and in oxygen. Fuel, 34, 119–122.
  • Colom-Díaz, J.M., Abián, M., Ballester, M.Y., Millera, A., Bilbao, R., and Alzueta, M.U. 2018. H2S conversion in a tubular flow reactor: experiments and kinetic modeling. Proc. Combust. Inst. doi:10.1016/j.proci.2018.05.005
  • Coward, C.F., and Jones, G.W. 1952. Limits of flammability of gases and vapors Bulletin 503, US Bureau of Mines.
  • El-Melih, A.M., Iovine, L., Al Shoaibi, A., and Gupta, A.K. 2017. Production of hydrogen from hydrogen sulfide in presence of methane. Int. J. Hydrogen Energy, 42, 4764–4773. doi:10.1016/j.ijhydene.2016.11.096
  • Flockenhaus, C. 1969. Rates of flame propagation of hydrogen sulfide/air mixtures. Gaswaerme Inter., 18, 153–156.
  • Gargurevich, I.A. 2005. Hydrogen sulfide combustion: relevant issues under claus furnace conditions. Ind. Eng. Chem. Res., 44, 7706–7729. doi:10.1021/ie0492956
  • Gersen, S., Van Essen, M., Darmeveil, H., Hashemi, H., Rasmussen, C.T., Christensen, J.M., Glarborg, P., and Levinsky, H. 2017. Experimental and modeling investigation of the effect of H2S addition to methane on the ignition and oxidation at high pressures. Energy Fuels, 31, 2175–2182. doi:10.1021/acs.energyfuels.6b02140
  • Gibbs, G.J., and Calcote, H.F. 1959. Effect of molecular structure on burning velocity. J. Chem. Eng. Data., 4, 226–237. doi:10.1021/je60003a011
  • Glarborg, P., Halaburt, B., Marshall, P., Guillory, A., Troe, J., Thellefsen, M., and Christensen, K. 2014. Oxidation of reduced sulfur species: carbon disulfide. J. Phys. Chem. A, 118, 6798–6809. doi:10.1021/jp5058012
  • Glarborg, P., and Marshall, P. 2013. Oxidation of reduced sulfur species: carbonyl sulfide. Int. J. Chem. Kinet., 45, 429–439. doi:10.1002/kin.2013.45.issue-7
  • Glarborg, P., Marshall, P., and Troe, J. 2015. Temperature and pressure dependence of the reaction S + CS (+M) → CS2 (+M). J. Phys. Chem. A, 119, 7277–7281. doi:10.1021/jp5121492
  • Gupta, A.K., Ibrahim, S., and Al Shoaibi, A. 2016. Advances in sulfur chemistry for treatment of acid gases. Prog Energ Combust, 54, 65–92. doi:10.1016/j.pecs.2015.11.001
  • Haynes, B.S. 2018. Combustion research for chemical processing. Proc. Combust. Inst. doi:10.1016/j.proci.2018.06.183
  • Hertzberg, M. 1984. The Theory of Flammability Limits, Flow Gradient Effect and Flame Stretch, RI 8865, Bureau of Mines Report of Investigations, Department of the Interior, Washington, DC, USA.
  • Ibrahim, S., Rahman, R.K., and Raj, A. 2017. Roles of hydrogen sulfide concentration and fuel gas injection on aromatics emission from Claus furnace. Chem. Eng. Sci., 172, 513–527. doi:10.1016/j.ces.2017.06.050
  • Karan, K., and Behie, L.A. 2004. CS2 formation in the claus reaction furnace: a kinetic study of methane−sulfur and methane−hydrogen sulfide reactions. Ind. Eng. Chem. Res., 43, 3304–3313.
  • Karan, K., Mehrotra, A.K., and Behie, L.A. 1999. A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to claus plants. Chem. Eng. Sci., 54, 2999–3006. doi:10.1016/S0009-2509(98)00475-8
  • Kerr, K.E., Gao, Y., and Marshall, P. 2018. Experimental and computational studies of the kinetics of the reaction of hydrogen atoms with carbon disulfide. Proc. Combust. Inst. doi:10.1016/j.proci.2018.06.091
  • Leeds University. 2002. Sulfur mechanism extension to the leeds methane mechanism. May. http://www.chem.leeds.ac.uk/combustion/mechanisms/leedssox50.dat. doi: 10.1044/1059-0889(2002/er01)
  • Li, X., Chen, G., Zhang, R., Zhu, H., and Xu, C. 2018. Simulation and assessment of gas dispersion above sea from a subsea release: a CFD-based approach. Int. J. Nav. Arch. Ocean. doi:10.1016/j.ijnaoe.2018.07.002
  • Li, Y., Yu, X., Li, H., Guo, Q., Dai, Z., Yu, G., and Wang, F. 2017. Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition. Appl. Energ., 190, 824–834. doi:10.1016/j.apenergy.2016.12.150
  • Ma, H., Zhou, L., Ma, S., Wang, Z., Cui, Z., Zhang, W., and Li, J. 2017. Reaction mechanism for sulfur species during pulverized coal combustion. Energy Fuels, 32, 3958–3966. doi:10.1021/acs.energyfuels.7b03868
  • Mulvihill, C.R., Keesee, C.L., Sikes, T., Teixeira, R.S., Mathieu, O., and Petersen, E.L. 2018. Ignition delay times, laminar flame speeds, and species time-histories in the H2S/CH4 system at atmospheric pressure. Proc. Combust. Inst. doi:10.1016/j.proci.2018.06.034
  • Patel, V.C., and Kumar, A. 1998. Evaluation of three air dispersion models: ISCST2, ISCLT2, and SCREEN2 for mercury emissions in an urban area. Environ. Monit. Assess., 53, 259–277. doi:10.1023/A:1005810619145
  • Petherbridge, J.R., May, P.W., Shallcross, D.E., Harvey, J.N., Fuge, G.M., Rosser, K.N., and Ashfold, M.N.R. 2003. Simulation of H–C–S containing gas mixtures relevant to diamond chemical vapour deposition. Diam. Relat. Mater, 12, 2178–2185. doi:10.1016/S0925-9635(03)00294-2
  • Pio, G., Palma, V., and Salzano, E. 2018. Comparison and validation of detailed kinetic models for the oxidation of light alkenes. Ind. Eng. Chem. Res., 57, 7130–7135. doi:10.1021/acs.iecr.8b01377
  • Pio, G., and Salzano, E. 2018. Laminar burning velocity of methane, hydrogen, and their mixtures at extremely low-temperature conditions. Energy Fuels, 32, 8830–8836. doi:10.1021/acs.energyfuels.8b01796
  • Pio, G., and Salzano, E. 2018b. Flammability parameters of liquified natural gas. J. Loss. Prev. Process Ind., 56, 424–429. doi:10.1016/j.jlp.2018.10.002
  • Pio, G.:., and Salzano, E. 2019. The effect of ultra-low temperature on the flammability limits of a methane/air/diluent mixtures. J. Hazard. Mater., 362, 224–229. doi:10.1016/j.jhazmat.2018.09.018
  • Saltelli, A., Ratto, M., Campolongo, F., Carboni, J., and Gatelli, D. 2008. Sensitivity Analysis: From Theory to Practice. Global Sensitivity Analysis, The Primer; John Wiley & Sons, Ltd., Hoboken, NJ. PP. 237−275.
  • Salzano, E., Basco, A., Cammarota, F., Di Sarli, V., and Di Benedetto, A. 2012. Explosions of syngas/CO2 mixtures in oxygen-enriched air. Ind. Eng. Chem. Res., 51, 7671–7678. doi:10.1021/ie201734u
  • Salzano, E., Pio, G., Ricca, A., and Palma, V. 2018. The effect of a hydrogen addition to the premixed flame structure of light alkanes. Fuel, 234, 1064–1070. doi:10.1016/j.fuel.2018.07.110
  • Savelieva, V.A., Titova, N.S., and Starik, A.M. 2017. Modeling study of hydrogen production via partial oxidation of H2S-H2O blend. Int. J. Hydrogen Energy, 42, 10854–10866. doi:10.1016/j.ijhydene.2017.03.155
  • Sebbar, N., Bozzelli, J.W., Bockhorn, H., and Trimis, D. 2018. A thermochemical study on the primary oxidation of sulfur. Combust. Sci. Technol. doi:10.1080/00102202.2018.1455134
  • Selim, H., Al Shoaibi, A., and Gupta, A.K. 2011. Effect of H2S in methane/air flames on sulfur chemistry and products speciation. Appl. Energ., 88, 2593–2600. doi:10.1016/j.apenergy.2011.02.032
  • Slimane, R.B., Lau, F.S., and Abbasian, J. 2000. Hydrogen production by superadiabatic combustion of hydrogen sulfide. Proceedings of the 2000 Hydrogen Program Review - NREL/CP-570-28890, San Ramon, CA, USA.
  • Wheeler, S.E., and Schaefer, H.F. 2009. Thermochemistry of the HOSO radical, a key intermediate in fossil fuel combustion. J. Phys. Chem. A, 113, 6779–6788. doi:10.1021/jp809576k
  • Xu, C., and Konnov, A.A. 2012. Validation and analysis of detailed kinetic models for ethylene combustion. Energy, 43, 19–29. doi:10.1016/j.energy.2011.11.006
  • Zachariah, M.R., and Smith, O.I. 1987. Experimental and numerical studies of sulfur chemistry in H2/O2/SO2 flames. Combust. Flame, 69, 125–139. doi:10.1016/0010-2180(87)90026-5
  • Zeng, Z., Altarawneh, M., Oluwoye, I., Glarborg, P., and Dlugogorski, B.Z. 2016. Inhibition and promotion of pyrolysis by hydrogen sulfide (H2S) and sulfanyl radical (SH). J. Phys. Chem. A, 120, 8941–8948. doi:10.1021/acs.jpca.6b09357
  • Zhang, Z., Chen, D., Li, Z., Cai, N., and Imada, J. 2017. Development of sulfur release and reaction model for computational fluid dynamics modeling in sub-bituminous coal combustion. Energy Fuels, 31, 1383–1398. doi:10.1021/acs.energyfuels.6b02867
  • Zhou, C.R., Sendt, K., and Haynes, B.S. 2013. Experimental and kinetic modelling study of H2S oxidation. Proc. Combust. Inst., 34, 625–632. doi:10.1016/j.proci.2012.05.083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.