516
Views
21
CrossRef citations to date
0
Altmetric
Articles

Ion-Induced Soot Nucleation Using a New Potential for Curved Aromatics

, , &
Pages 747-765 | Received 01 Oct 2018, Accepted 11 Dec 2018, Published online: 21 Jan 2019

References

  • Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and Lindah, E. 2015. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. doi:10.1016/j.softx.2015.06.001.
  • Alfè, M., Apicella, B., Barbella, R., Rouzaud, J.N., Tregrossi, A., and Ciajolo, A. 2009. Structure-property relationship in nanostructures of young and mature soot in premixed flames. Proc. Combust. Inst., 32 (I), 697–704. doi:10.1016/j.proci.2008.06.193.
  • Benajes, J., Martín, J., García, A., Villalta, D., and Warey, A. 2015. In-cylinder soot radiation heat transfer in direct-injection diesel engines. Energy Convers. Manage., 106, 414–427. doi:10.1016/j.enconman.2015.09.059.
  • Bernal, J.D., and Fowler, R.H. 1933. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys., 1 (8), 515–548. doi:10.1063/1.1749327.
  • Biase, E.D., and Sarkisov, L. 2013. Systematic development of predictive molecular models of high surface area activated carbons for adsorption applications. Carbon, 64, 262–280. doi:10.1016/j.carbon.2013.07.061.
  • Botero, M.L., Chen, D., Gonzàlez-Calera, S., Jefferson, D., and Kraft, M. 2016. HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon, 96, 459–473. doi:10.1016/j.carbon.2015.09.077.
  • Bowal, K., Martin, J.W., and Kraft, M. 2019. Partitioning of polycyclic aromatic hydrocarbons in heterogeneous clusters. Carbon, 143, 247–256. doi:10.1016/j.carbon.2018.11.004.
  • Cabaleiro-Lago, E.M., Fernández, B., and Rodríguez-Otero, J. 2018. Dissecting the concave-convex π-π interaction in corannulene and sumanene dimers: SAPT(DFT) analysis and performance of DFT dispersion-corrected methods. J. Comput. Chem., 39 (2), 93–104. doi:10.1002/jcc.v39.2.
  • Carbone, F., Canagaratna, M.R., Lambe, A.T., Jayne, J.T., Worsnop, D.R., and Gomez, A. 2018. Exploratory analysis of a sooting premixed flame via on-line high resolution (APi– TOF) mass spectrometry. Proc. Combust. Inst., doi:10.1016/j.proci.2018.08.020.
  • Carbone, F., Moslih, S., and Gomez, A. 2017. Probing gas-to-particle transition in a moderately sooting atmospheric pressure ethylene/air laminar premixed flame. Part II: Molecular clusters and nascent soot particle size distributions. Combust. Flame, 181, 329–341. doi:10.1016/j.combustflame.2017.02.021.
  • Carrazana-García, J.A., Rodríguez-Otero, J., and Cabaleiro-Lago, E.M. 2011. DFT study of the interaction between alkaline cations and molecular bowls derived from fullerene. J. Phys. Chem. B, 115 (12), 2774–2782. doi:10.1021/jp109654e.
  • Chen, D., Totton, T.S., Akroyd, J., Mosbach, S., and Kraft, M. 2014a. Phase change of polycyclic aromatic hydrocarbon clusters by mass addition. Carbon, 77, 25–35. doi:10.1016/j.carbon.2014.04.089.
  • Chen, D., Totton, T.S., Akroyd, J., Mosbach, S., and Kraft, M. 2014b. Size-dependent melting of polycyclic aromatic hydrocarbon nano-clusters: A molecular dynamics study. Carbon, 67, 79–91. doi:10.1016/j.carbon.2013.09.058.
  • Chen, D., and Wang, H. 2017. Cation-π interactions between rlame chemi-ions and aromatic compounds. Energy & Fuels, 31 (3), 2345–2352. doi:10.1021/acs.energyfuels.6b02354.
  • Chickos, J.S., Webb, P., Nichols, G., Kiyobayashi, T., Cheng, P.-C., and Scott, L. 2002. The enthalpy of vaporization and sublimation of corannulene, coronene, and perylene at T= 298.15 K. J. Chem. Thermodyn., 34 (8), 1195–1206. doi:10.1006/jcht.2002.0977.
  • Chung, S.H., and Violi, A. 2011. Peri-condensed aromatics with aliphatic chains as key intermediates for the nucleation of aromatic hydrocarbons. Proc. Combust. Inst., 33 (1), 693–700. doi:10.1016/j.proci.2010.06.038.
  • Di Stasio, S., Legarrec, J.L., and Mitchell, J.B. 2011. Synchrotron radiation studies of additives in combustion, II: Soot agglomerate microstructure change by alkali and alkaline-earth metal addition to a partially premixed flame. Energy Fuels, 25 (3), 916–925. doi:10.1021/ef1012209.
  • Eaves, N.A., Dworkin, S.B., and Thomson, M.J. 2015. The importance of reversibility in modeling soot nucleation and condensation processes. Proc. Combust. Inst., 35 (2), 1787–1794. doi:10.1016/j.proci.2014.05.036.
  • Elvati, P., and Violi, A. 2013. Thermodynamics of poly-aromatic hydrocarbon clustering and the effects of substituted aliphatic chains. Proc. Combust. Inst., 34 (1), 1837–1843. doi:10.1016/j.proci.2012.07.030.
  • Ferenczy, G., Reynolds, C., Winn, P., and Stone, A. 1998. MULFIT: A Program for Calculating Electrostatic Potential-Fitted Charges, May be obtained by contacting AJ Stone, email address: [email protected], Cambridge.
  • Filatov, A.S., and Petrukhina, M.A. 2010. Probing the binding sites and coordination limits of buckybowls in a solvent-free environment: Experimental and theoretical assessment. Coord. Chem. Rev., 254 (17–18), 2234–2246. doi:10.1016/j.ccr.2010.05.004.
  • Filatov, A.S., Scott, L.T., and Petrukhina, M.A. 2010. π-π interactions and solid state packing trends of polycyclic aromatic bowls in the indenocorannulene family: Predicting potentially useful bulk properties. Cryst. Growth Des., 10 (10), 4607–4621. doi:10.1021/cg100898g.
  • Glassman, I. 1989. Soot formation in combustion processes. Symp. (Int.) Combust., 22 (1), 295–311. doi:10.1016/S0082-0784(89)80036-0.
  • Gobre, V.V., and Tkatchenko, A. 2013. Scaling laws for van der Waals interactions in nanostructured materials. Nat. Commun., 4, 2341. doi:10.1038/ncomms3341.
  • Granc˘ic˘, P., Martin, J.W., Chen, D., Mosbach, S., and Kraft, M. 2016. Can nascent soot particles burn from the inside? Carbon, 109, 608–615. doi:10.1016/j.carbon.2016.08.025.
  • Harris, P.J.F. 2004. Fullerene-related structure of commercial glassy carbons. Philos. Mag., 84 (29), 3159–3167. doi:10.1080/14786430410001720363.
  • Harris, P.J.F., Liu, Z., and Suenaga, K. 2008. Imaging the atomic structure of activated carbon. J. Phys. Condens. Matter, 20 (36), doi:10.1088/0953-8984/20/36/362201.
  • Haynes, B., Jander, H., and Wagner, H.G. 1979. The effect of metal additives on the formation of soot in premixed flames. Symposium (International) on Combustion, 17(1), 1365–1374. doi: 10.1016/S0082-0784(79)80128-9.
  • Hesselmann, A., Jansen, G., and Schütz, M. 2005. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys., 122, 014103. doi:10.1063/1.1824898.
  • Highwood, E.J., and Kinnersley, R.P. 2006. When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environ. Int., 32 (4), 560–566. doi:10.1016/j.envint.2005.12.003.
  • Iavarone, S., Pascazio, L., Sirignano, M., De Candia, A., Fierro, A., de Arcangelis, L., and D’Anna, A. 2016. Molecular dynamics simulations of incipient carbonaceous nanoparticle formation at flame conditions. Combust. Theor. Model., 7830, 1–13.
  • Jensen, K.P., and Jorgensen, W.L. 2006. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput., 2 (6), 1499–1509. doi:10.1021/ct600235y.
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79 (2), 926–935. doi:10.1063/1.445869.
  • Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., and Jorgensen, W.L. 2001. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B, 105 (28), 6474–6487. doi:10.1021/jp003919d.
  • Lafleur, A.L., Howard, J.B., Marr, J.A., and Yadav, T. 1993. Proposed fullerene precursor corannulene identified in flames both in the presence and absence of fullerene production. J. Phys. Chem., 97 (51), 13539–13543. doi:10.1021/j100153a020.
  • Lovas, F.J., McMahon, R.J., Grabow, J.U., Schnell, M., Mack, J., Scott, L.T., and Kuczkowski, R.L. 2005. Interstellar chemistry: A strategy for detecting polycyclic aromatic hydrocarbons in space. J. Am. Chem. Soc., 127 (12), 4345–4349. doi:10.1021/ja0426239.
  • Marshall, M.S., Steele, R.P., Thanthiriwatte, K.S., and Sherrill, C.D. 2009. Potential energy curves for cation-π interactions: Off-axis configurations are also attractive. J. Phys. Chem. A, 113 (48), 13628–13632. doi:10.1021/jp906086x.
  • Martin, J.W., Botero, M., Slavchov, R.I., Bowal, K., Akroyd, J., Mosbach, S., and Kraft, M. 2018a. Flexoelectricity and the formation of carbon nanoparticles in flames. J. Phys. Chem. C, doi:10.1021/acs.jpcc.8b08264.
  • Martin, J.W., Bowal, K., Menon, A., Slavchov, R.I., Akroyd, J., Mosbach, S., and Kraft, M. 2018b. Polar curved polycyclic aromatic hydrocarbons in soot formation. Proc. Combust. Inst., In Press, doi: 10.1016/j.proci.2018.05.046.
  • Martin, J.W., Slavchov, R.I., Yapp, E.K., Akroyd, J., Mosbach, S., and Kraft, M. 2017. The polarization of polycyclic aromatic hydrocarbons curved by pentagon incorporation: The role of the flexoelectric dipole. J. Phys. Chem. C, 121 (48), 27154–27163. doi:10.1021/acs.jpcc.7b09044.
  • Misquitta, A.J., Podeszwa, R., Jeziorski, B., and Szalewicz, K. 2005. Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional theory. J. Chem. Phys., 123, 214103. doi:10.1063/1.2135288.
  • Misquitta, A.J., and Stone, A.J. 2008. Dispersion energies for small organic molecules: First row atoms. Mol. Phys., 106, 1631–1643. doi:10.1080/00268970802258617.
  • Misquitta, A.J., and Stone, A.J. 2016. Ab initio atom-atom potentials using CamCASP: Theory and application to many-body models for the pyridine dimer. J. Chem. Theory Comput., 12 (9), 4184–4208. PMID: 27467814. doi:10.1021/acs.jctc.5b01241.
  • Neves, A.R., Fernandes, P.A., and Ramos, M.J. 2011. The accuracy of density functional theory in the description of cation-π and π-hydrogen bond interactions. J. Chem. Theory Comput., 7 (7), 2059–2067. doi:10.1021/ct100376g.
  • Pascazio, L., Sirignano, M., and D’Anna, A. 2017. Simulating the morphology of clusters of polycyclic aromatic hydrocarbons: The influence of the intermolecular potential. Combust. Flame, 185, 53–62. doi:10.1016/j.combustflame.2017.07.003.
  • Petrukhina, M.A., Andreini, K.W., Mack, J., and Scott, L.T. 2005. X-ray quality geometries of geodesic polyarenes from theoretical calculations: What levels of theory are reliable? J. Org. Chem., 70 (14), 5713–5716. doi:10.1021/jo050233e.
  • Podeszwa, R. 2010. Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons. J. Chem. Phys., 132 (4), 224704. doi:10.1063/1.3300064.
  • Podeszwa, R., and Szalewicz, K. 2008. Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys., 10, 2735–2746. doi:10.1039/b710310g.
  • Schröder, D., Loos, J., Schwarz, H., Thissen, R., Preda, D.V., Scott, L.T., Caraiman, D., Frach, M.V., and Böhme, D.K. 2001. Single and double ionization of corannulene and coronene. Helv. Chim. Acta, 84 (6), 1625–1634. doi:10.1002/(ISSN)1522-2675.
  • Schyman, P., and Jorgensen, W.L. 2013. Exploring adsorption of water and ions on carbon surfaces using a polarizable force field. J. Phys. Chem. Lett., 4 (3), 468–474. doi:10.1021/jz302085c.
  • Scott, L.T., Hashemi, M.M., and Bratcher, M.S. 1992. Corannulene bowl-to-bowl inversion is rapid at room temperature. Am. Chem. Soc., 114, 1920–1921. doi:10.1021/ja00031a079.
  • Shostak, S.L., Ebenstein, W.L., and Muenter, J.S. 1991. The dipole moment of water. I. Dipole moments and hyperfine properties of H2O and HDO in the ground and excited vibrational states. J. Chem. Phys., 94 (9), 5875. doi:10.1063/1.460471.
  • Simonsson, J., Olofsson, N.E., Bladh, H., Sanati, M., and Bengtsson, P.E. 2017. Influence of potassium and iron chloride on the early stages of soot formation studied using imaging LII/ELS and TEM techniques. Proc. Combust. Inst., 36 (1), 853–860. doi:10.1016/j.proci.2016.07.003.
  • Stone, A.J. 2005. Distributed multipole analysis: Stability for large basis sets. J. Chem. Theory Comput., 1, 1128–1132.
  • Stone, A.J., and Alderton, M. 1985. Distributed multipole analysis: Methods and applications. Mol. Phys., 56 (5), 1047–1064. doi:10.1080/00268978500102891.
  • Stone, A.J., Dullweber, A., Engkvist, O., Fraschini, E., Hodges, M.P., Meredith, A.W., Popelier, P.L.A., and Wales, D.J. 2017. ORIENT: A Program for Studying Interactions between Molecules, Version 4.9 University of Cambridge. http://www-stone.ch.cam.ac.uk/programs.html#Orient
  • Tang, K.T., and Toennies, J.P. 1984. An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J. Chem. Phys., 80, 3726–3741. doi:10.1063/1.447150.
  • Terzyk, A.P., Furmaniak, S., Gauden, P.A., Harris, P.J., and Kowalczyk,P. 2012. Virtual Porous Carbons. In: J. Tascon, ed., Novel carbon adsorbents. Amsterdam: Elsevier, pp.61–104.
  • Totton, T.S., Misquitta, A.J., and Kraft, M. 2010. A first principles development of a general anisotropic potential for polycyclic aromatic hydrocarbons. J. Chem. Theory Comput., 6 (3), 683–695. doi:10.1021/ct9004883.
  • Totton, T.S., Misquitta, A.J., and Kraft, M. 2011. A transferable electrostatic model for intermolecular interactions between polycyclic aromatic hydrocarbons. Chem. Phys. Lett., 510 (1–3), 154–160. doi:10.1016/j.cplett.2011.05.021.
  • Totton, T.S., Misquitta, A.J., and Kraft, M. 2012. A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. Phys. Chem. Chem. Phys., 14 (14), 4081–4094. doi:10.1039/c2cp23008a.
  • Tsuzuki, S., Yoshida, M., Uchimaru, T., and Mikami, M. 2001. The origin of the cation/π interaction: The significant importance of the induction in Li+ and Na+ complexes. J. Phys. Chem. A, 105 (4), 769–773. doi:10.1021/jp003287v.
  • van de Waal, B.W. 1983. Calculated ground-state structures of 13-molecule clusters of carbon dioxide, methane, benzene, cyclohexane, and naphthalene. J. Chem. Phys., 79 (8), 3948. doi:10.1063/1.446263.
  • Wang, C., Huddle, T., Huang, C.H., Zhu, W., Vander Wal, R.L., Lester, E.H., and Mathews, J.P. 2017. Improved quantification of curvature in high-resolution transmission electron microscopy lattice fringe micrographs of soots. Carbon, 117, 174–181. doi:10.1016/j.carbon.2017.02.059.
  • Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst., 33 (1), 41–67. doi:10.1016/j.proci.2010.09.009.
  • Williams, D.E. 1999. Improved intermolecular force field for crystalline hydrocarbons containing four- or three-coordinated carbon. J. Mol. Struct., 485-486, 321–347. doi:10.1016/S0022-2860(99)00092-7.
  • Williams, D.E. 2001. Improved intermolecular force field for molecules containing H, C, N, and O atoms, with applications to nucleoside and peptide crystals. J. Comput. Chem., 22, 1154–1166. doi:10.1002/jcc.1074.
  • Zabula, A.V., Spisak, S.N., Filatov, A.S., Rogachev, A.Y., and Petrukhina, M.A. 2018. Record alkali metal intercalation by highly charged corannulene. Acc. Chem. Res., 51 (6), 1541–1549. doi:10.1021/acs.accounts.8b00141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.