602
Views
8
CrossRef citations to date
0
Altmetric
Articles

Measurements of the High Temperature Ignition Delay Times and Kinetic Modeling Study on Oxidation of Nitromethane

, , ORCID Icon, , , & show all
Pages 313-334 | Received 30 Sep 2018, Accepted 30 Dec 2018, Published online: 10 Feb 2019

References

  • Alam, F.E., Haas, F.M., Farouk, T.I., and Dryer, F.L. 2016. Influence of trace nitrogen oxides on natural gas oxidation: flow reactor measurements and kinetic modeling. Energy Fuels, 31(3), 2360–2369.
  • Annesley, C.J., Randazzo, J.B., Klippenstein, S.J., Harding, L.B., Jasper, A.W., Georgievskii, Y., Ruscic, B., and Tranter, R.S. 2015. Thermal dissociation and roaming isomerization of nitromethane: experiment and theory. J. Phys. Chem. A, 119(28), 7872–7893. doi:10.1021/acs.jpca.5b01563
  • Arenas, J.F., Centeno, S.P.L., Peztoc, N.I., Pelez, D., and Soto, J. 2003. DFT and CASPT2 study of two thermal reactions of nitromethane: C–N bond cleavage and nitro-to-nitrite isomerization. An example of the inverse symmetry breaking deficiency in density functional calculations of an homolytic dissociation. J. Mol. Struc. Theochem., 630, 17–23. doi:10.1016/S0166-1280(03)00165-9
  • Berman, H.A., and West, E.D. 2002. Density and vapor pressure of nitromethane 26.degree. to 200.degree. J. Chem. Eng. Data, 12(2), 197–199. doi:10.1021/je60033a011
  • Bouyer, V., Darbord, I., Hervé, P., Baudin, G., Gallic, C.L., Clément, F., and Chavent, G. 2006. Shock-to-detonation transition of nitromethane: time-resolved emission spectroscopy measurements. Combust. Flame, 144(1–2), 139–150. doi:10.1016/j.combustflame.2005.07.004
  • Boyer, E., and Kuo, K. 2006. Characteristics of nitromethane for propulsion applications. AIAA Paper 2006-361.
  • Boyer, E., and Kuo, K.K. 2007. Modeling of nitromethane flame structure and burning behavior. Proc. Combust. Inst., 31(2), 2045–2053. doi:10.1016/j.proci.2006.07.025
  • Brequigny, P., Dayma, G., Halter, F., Mounaïm-Rousselle, C., Dubois, T., and Dagaut, P. 2015. Laminar burning velocities of premixed nitromethane/air flames: an experimental and kinetic modeling study. Proc. Combust. Inst., 35(1), 703–710. doi:10.1016/j.proci.2014.06.126
  • Cracknell, R.F., Andrae, J.C.G., Mcallister, L.J., Norton, M., and Walmsley, H.L. 2009. The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes. Combust. Flame, 156(5), 1046–1052. doi:10.1016/j.combustflame.2008.12.001
  • Dagaut, P., Glarborg, P., and Alzueta, M.U. 2008. The oxidation of hydrogen cyanide and related chemistry. Prog. Energy Combust. Sci., 34(1), 1–46. doi:10.1016/j.pecs.2007.02.004
  • Faghih, M., and Chen, Z. 2017. Two-stage heat release in nitromethane/air flame and its impact on laminar flame speed measurement. Combust. Flame., 183, 157–165. doi:10.1016/j.combustflame.2017.05.013
  • Glänzer, K., and Troe, J. 1972. Thermische zerfallsreaktionen von nitroverbindungen I: dissoziation von nitromethan. Helv. Chim. Acta., 55(8), 2884–2893. doi:10.1002/hlca.19720550821
  • Glarborg, P., Alzueta, M.U., Dam-Johansen, K., and Miller, J.A. 1998. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combust. Flame, 115(1–2), 1–27. doi:10.1016/S0010-2180(97)00359-3
  • Glarborg, P., Bendtsen, A.B., and Miller, J.A. 1999. Nitromethane dissociation: implications for the CH3 + NO2 reaction. Int. J. Chem. Kinet., 31(9), 591–602. doi:10.1002/(ISSN)1097-4601
  • Hsu, D.S.Y., and Lin, M.C. 1985. Laser probing and kinetic modeling of NO and CO production in shock-wave decomposition of nitromethane under highly diluted conditions. J. Energ. Mater. 3(2), 95–127. doi:10.1080/07370658508012337
  • Kalghatgi, G.T. 2005. Auto-Ignition quality of practical fuels and implications for fuel requirements of future SI and HCCI engines. SAE, 26(4), 41–53.
  • Kelzenberg, S., Eisenreich, N., Eckl, W., and Weiser, V. 1999. Modelling nitromethane combustion. Propell. Explos. Pyrot., 24(3), 189–194. doi:10.1002/(SICI)1521-4087(199906)24:03<189::AID-PREP189>3.0.CO;2-P
  • Leal-Crouzet, B., Baudin, G., and Presles, H.N. 2000. Shock initiation of detonation in nitromethane. Combust. Flame, 122(4), 463–473. doi:10.1016/S0010-2180(00)00132-2
  • Lu, Y.-C., Ulas, A., Boyer, E., and Kuo, K.K. 1997. Determination of temperature profiles of self-deflagrating RDX by UV/Visible absorption spectroscopy and fine-wire thermocouples. Combust. Sci. Technol., 123(1–6), 147–163. doi:10.1080/00102209708935625
  • Makovky, A., and Lenji, L. 2002. Nitromethane – physical properties, thermodynamics, kinetics of decomposition, and utilization as fuel. Chem. Rev., 58(4), 627–644. doi:10.1021/cr50022a002
  • Mathieu, O., Giri, B., Agard, A.R., Adams, T.N., Mertens, J.D., and Petersen, E.L. 2016. Nitromethane ignition behind reflected shock waves: experimental and numerical study. Fuel, 182, 597–612. doi:10.1016/j.fuel.2016.05.060
  • Mccullough, J.P., Scott, D.W., Pennington, R.E., Hossenlopp, I.A., and Waddington, G. 1954. Nitromethane: the vapor heat capacity, heat of vaporization, vapor pressure and gas imperfection; the chemical thermodynamic properties from 0 to 1500°K. J. Am. Chem. Soc., 76(19), 175–186. doi:10.1021/ja01648a008
  • Mckee, M.L. 1986. Isomerization of the nitromethane and methyl nitrite radical cations. A theoretical study. J. Phys. Chem., 90, 2335–2340. doi:10.1021/j100402a018
  • Menikoff, R., and Shaw, M.S. 2011. Modeling detonation waves in nitromethane. Combust. Flame, 158(12), 2549–2558. doi:10.1016/j.combustflame.2011.05.009
  • Metcalfe, W.K., Burke, S.M., Ahmed, S.S., and Curran, H.J. 2013. A hierarchical and comparative kinetic modeling study of C 1 − C 2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 45(10), 638–675. doi:10.1002/kin.2013.45.issue-10
  • Nauclér, J.D., Li, Y., Nilsson, E.J.K., Curran, H.J., and Konnov, A.A. 2016. An experimental and modeling study of nitromethane + O 2 + N 2 ignition in a shock tube. Fuel, 186, 629–638. doi:10.1016/j.fuel.2016.09.003
  • Petersen, E.L., Rickard, M.J.A., Crofton, M.W., Abbey, E.D., Traum, M.J., and Kalitan, D.M. 2005. A facility for gas- and condensed-phase measurements behind shock waves. Meas. Sci. Technol., 16(9), 1716–1729. doi:10.1088/0957-0233/16/9/003
  • Prestes, H.N., Vidal, P., Gois, J.C., Khasainov, B.A., and Ermolaev, B.S. 1995. Influence of glass microballoons size on the detonation of nitromethane based mixtures. Shock Waves, 4(6), 325–329. doi:10.1007/BF01413874
  • Sivaramakrishnan, R., Brezinsky, K., Dayma, G., and Dagaut, P. 2007. High pressure effects on the mutual sensitization of the oxidation of NO and CH4-C2H6 blends. Phys. Chem. Chem. Phys., 9(31), 4230–4244. doi:10.1039/b703379f
  • Stranic, I., Chase, D.P., Harmon, J.T., Yang, S., Davidson, D.F., and Hanson, R.K. 2012. Shock tube measurements of ignition delay times for the butanol isomers. Combust. Flame, 159(2), 516–527. doi:10.1016/j.combustflame.2011.08.014
  • Tang, C., Wei, L., Man, X., Zhang, J., Huang, Z., and Law, C.K. 2013. High temperature ignition delay times of C5 primary alcohols. Combust. Flame, 160(3), 520–529. doi:10.1016/j.combustflame.2012.11.018
  • Tian, Z., Zhang, L., Li, Y., Yuan, T., and Qi, F. 2009. An experimental and kinetic modeling study of a premixed nitromethane flame at low pressure. Proc. Combust. Inst., 32(1), 311–318. doi:10.1016/j.proci.2008.06.098
  • Tricot, J.C., Perche, A., and Lucquin, M. 1981. Gas phase oxidation of nitromethane. Combust. Flame, 40(3), 269–291. doi:10.1016/0010-2180(81)90130-9
  • Yetter, R.A., Dryer, F.L., Allen, M.T., and Gatto, J.L. 1995. Development of gas-phase reaction mechanisms for nitramine combustion. J. Propul. Power, 11(4), 683–697. doi:10.2514/3.23894
  • Zhang, K., Zhang, L., Xie, M., Ye, L., Zhang, F., Glarborg, P., and Qi, F. 2013. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure. Proc. Combust. Inst., 34(1), 617–624. doi:10.1016/j.proci.2012.06.010
  • Zhang, Y., Huang, Z., Wei, L., Zhang, J., and Law, C.K. 2012. Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures. Combust. Flame, 159(3), 918–931. doi:10.1016/j.combustflame.2011.09.010
  • Zhang, Y.X., and Bauer, S.H. 1997. Modeling the decomposition of nitromethane, induced by shock heating. J. Phys. Chem. B, 101(43), 8717–8726. doi:10.1021/jp970716p

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.