249
Views
9
CrossRef citations to date
0
Altmetric
Articles

Algorithmic Aspects of the LES-PBE-PDF Method for Modeling Soot Particle Size Distributions in Turbulent Flames

ORCID Icon & ORCID Icon
Pages 766-796 | Received 05 Oct 2018, Accepted 14 Jan 2019, Published online: 25 Apr 2019

References

  • Akridis, P. 2016. Coupled CFD-population balance modelling of soot formation in laminar and turbulent flames. Ph.D. thesis. Imperial College London.
  • Akridis, P., and Rigopoulos, S., 2015. Modelling of soot formation in a turbulent diffusion flame using a comprehensive CFD-PBE model with full chemistry. Proceedings of the European Combustion Meeting, Budapest, Hungary.
  • Attili, A., Bisetti, F., Mueller, M.E., and Pitsch, H. 2014. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame, 161, 1849–1865. doi:10.1016/j.combustflame.2014.01.008
  • Bisetti, F., Blanquart, G., Mueller, M.E., and Pitsch, H. 2012. On the formation and early evolution of soot in turbulent non-premixed flames. Combust. Flame, 159, 317–335. doi:10.1016/j.combustflame.2011.05.021
  • Di Veroli, G.Y., and Rigopoulos, S. 2009. A study of turbulence-chemistry interaction in reactive precipitation via a population balance-transported PDF method, In Hanjalić, K., Nagano, Y., and Jakirlić, S. (Eds.), Proceedings of the Sixth International Symposium on Turbulence, Heat and Mass Transfer, Begell House, Inc., Rome, Italy.
  • Di Veroli, G.Y., and Rigopoulos, S. 2010. Modeling of turbulent precipitation: A transported population balance-PDF method. AIChE J., 56, 878–892.
  • Di Veroli, G.Y., and Rigopoulos, S. 2011. Modeling of aerosol formation in a turbulent jet with the transported population balance equation-probability density function approach. Phys. Fluids, 23, 043305. doi:10.1063/1.3576913
  • Fox, R.O. 2012. Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech., 44, 47–76. doi:10.1146/annurev-fluid-120710-101118
  • Gao, F., and O'Brien, E.E. 1993. A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluid A Fluid Dynam., 5, 1282–1284. doi:10.1063/1.858617
  • Garnier, E., Adams, N., and Sagaut, P. 2009. Large Eddy Simulation for Compressible Flows, Springer Science & Business Media.
  • Hairer, E., Nørsett, S.P., and Wanner, G. 1993. Solving Ordinary Differential Equations I: Nonstiff Problems. Volume 8 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, Heidelberg.
  • Haworth, D. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci., 36, 168–259. doi:10.1016/j.pecs.2009.09.003
  • Hulburt, H.M., and Katz, S. 1964. Some problems in particle technology: A statistical mechanical formulation. Chem. Eng. Sci., 19, 555–574. doi:10.1016/0009-2509(64)85047-8
  • Jones, W.P. 2002. The joint scalar probability density function method, In Launder, B.E., and Sandham, N. (Eds.), Closure Strategies for Turbulent and Transitional Flows, Cambridge University Press, Cambridge, United Kingdom. Chapter 20, pp. 582–625.
  • Jones, W.P., and Navarro-Martinez, S. 2007. Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame, 150, 170–187. doi:10.1016/j.combustflame.2007.04.003
  • Jones, W.P., and Prasad, V.N. 2010. Large eddy simulation of the Sandia flame series (D-F) using the Eulerian stochastic field method. Combust. Flame, 157, 1621–1636. doi:10.1016/j.combustflame.2010.05.010
  • Kee, R.J., Rupley, F.M., Meeks, E., and Miller, J.A. 1996. CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics, Sandia National Laboratories, Livermore, CA, USA.
  • Klein, M., Sadiki, A., and Janicka, J. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys., 186, 652–665. doi:10.1016/S0021-9991(03)00090-1
  • Köhler, M., Geigle, K.P., Meier, W., Crosland, B.M., Thomson, K.A., and Smallwood, G.J. 2011. Sooting turbulent jet flame: characterization and quantitative soot measurements. Appl. Phys. B, 104, 409–425. doi:10.1007/s00340-011-4373-y
  • Koo, H., Hassanaly, M., Raman, V., Mueller, M.E., and Geigle, K.P. 2016. Large-eddy simulation of soot formation in a model gas turbine combustor. J. Eng. Gas. Turb. Power, 139, 031503. doi:10.1115/1.4034448
  • Koren, B. 1993. A robust upwind discretization method for advection, diffusion and source terms, In Vreugdenhil, C.B., and Koren, B. (Eds.), Numerical Methods for Advection-Diffusion Problems, Vieweg Verlag, Volume 45 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 117–138.
  • Kronenburg, A., Bilger, R., and Kent, J.H. 2000. Modeling soot formation in turbulent methane-air jet diffusion flames. Combust. Flame, 121, 24–40. doi:10.1016/S0010-2180(99)00146-7
  • Lundgren, T.S. 1967. Distribution functions in the statistical theory of turbulence. Phys. Fluids, 10, 969–975. doi:10.1063/1.1762249
  • McDermott, R., and Pope, S.B. 2007. A particle formulation for treating differential diffusion in filtered density function methods. J. Comput. Phys., 226, 947–993. doi:10.1016/j.jcp.2007.05.006
  • Mueller, M.E., and Pitsch, H. 2011. Large eddy simulation subfilter modeling of soot-turbulence interactions. Phys. Fluids, 23, 115104. doi:10.1063/1.3657826
  • Mueller, M.E., and Pitsch, H. 2012. LES model for sooting turbulent nonpremixed flames. Combust. Flame, 159, 2166–2180. doi:10.1016/j.combustflame.2012.02.001
  • Neuber, G., Garcia, C.E., Kronenburg, A., Williams, B.A.O., Beyrau, F., Stein, O.T., and Cleary, M.J. 2019. Joint experimental and numerical study of silica particulate synthesis in a turbulent reacting jet. Proc. Combust. Inst., 37, 1213–1220. doi:10.1016/j.proci.2018.06.074
  • Neuber, G., Kronenburg, A., Stein, O.T., and Cleary, M.J. 2017. MMC-LES modelling of droplet nucleation and growth in turbulent jets. Chem. Eng. Sci., 167, 204–218. doi:10.1016/j.ces.2017.04.008
  • Patankar, S.V. 1980. Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York.
  • Pavliotis, G.A. 2014. Stochastic Processes and Applications, Springer, New York.
  • Pierce, C.D., and Moin, P. 2004. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech., 504, 73–97. doi:10.1017/S0022112004008213
  • Pitsch, H. 2006. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech., 38, 453–482. doi:10.1146/annurev.fluid.38.050304.092133
  • Pitsch, H., Riesmeier, E., and Peters, N. 2000. Unsteady flamelet modeling of soot formation in turbulent diffusion flames. Combust. Sci. Technol., 158, 389–406. doi:10.1080/00102200008947342
  • Pitsch, H., and Steiner, H. 2000. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids, 12, 2541–2554. doi:10.1063/1.1288493
  • Pope, S.B. 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci., 11, 119–192. doi:10.1016/0360-1285(85)90002-4
  • Pope, S.B. 1991. Computations of turbulent combustion: Progress and challenges. Symp. (Int.) Combust., 23, 591–612. doi:10.1016/S0082-0784(06)80307-3
  • Pope, S.B. 2010. Self-conditioned fields for large-eddy simulations of turbulent flows. J. Fluid Mech., 652, 139–169. doi:10.1017/S0022112009994174
  • Prasad, V.N. 2011. Large eddy simulation of partially premixed turbulent combustion. Ph.D. thesis. Imperial College London.
  • Qamar, N.H., Alwahabi, Z.T., Chan, Q.N., Nathan, G.J., Roekaerts, D., and King, K.D. 2009. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combust. Flame, 156, 1339–1347. doi:10.1016/j.combustflame.2009.02.011
  • Qamar, S., Ashfaq, A., Warnecke, G., Angelov, I., Elsner, M.P., and Seidel-Morgenstern, A. 2007. Adaptive high-resolution schemes for multidimensional population balances in crystallization processes. Comput. Chem. Eng., 31, 1296–1311. doi:10.1016/j.compchemeng.2006.10.014
  • Qamar, S., Elsner, M.P., Angelov, I.A., Warnecke, G., and Seidel-Morgenstern, A. 2006. A comparative study of high resolution schemes for solving population balances in crystallization. Comput. Chem. Eng., 30, 1119–1131. doi:10.1016/j.compchemeng.2006.02.012
  • Raman, V., and Fox, R.O. 2016. Modeling of fine-particle formation in turbulent flames. Annu. Rev. Fluid Mech., 48, 159–190. doi:10.1146/annurev-fluid-122414-034306
  • Rigopoulos, S. 2007. PDF method for population balance in turbulent reactive flow. Chem. Eng. Sci., 62, 6865–6878. doi:10.1016/j.ces.2007.05.039
  • Rigopoulos, S. 2010. Population balance modelling of polydispersed particles in reactive flows. Prog. Energy Combust. Sci., 36, 412–443. doi:10.1016/j.pecs.2009.12.001
  • Rodrigues, P., Franzelli, B., Vicquelin, R., Gicquel, O., and Darabiha, N. 2018. Coupling an LES approach and a soot sectional model for the study of sooting turbulent non-premixed flames. Combust. Flame, 190, 477–499. doi:10.1016/j.combustflame.2017.12.009
  • Sabel’nikov, V., and Soulard, O. 2005. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E, 72, 016301. doi:10.1103/PhysRevE.72.016301
  • Sagaut, P. 2006. Large Eddy Simulation for Incompressible Flows: An Introduction. 3rd ed., Springer, Berlin.
  • Schiener, M.A., and Lindstedt, R.P. 2018. Joint-scalar transported PDF modelling of soot in a turbulent non-premixed natural gas flame. Combust. Theor. Model., 22(6), 1134–1175. doi:10.1080/13647830.2018.1472391
  • Schiener, M.A., and Lindstedt, R.P. 2019. Transported probability density function based modelling of soot particle size distributions in non-premixed turbulent jet flames. Proc. Combust. Inst., 37, 1049–1056. doi:10.1016/j.proci.2018.06.088
  • Sewerin, F., and Rigopoulos, S. 2017a. An explicit adaptive grid approach for the numerical solution of the population balance equation. Chem. Eng. Sci., 168, 250–270. doi:10.1016/j.ces.2017.01.054
  • Sewerin, F., and Rigopoulos, S. 2017b. An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows. Phys. Fluids, 29, 105105. doi:10.1063/1.5001343
  • Sewerin, F., and Rigopoulos, S. 2018. An LES-PBE-PDF approach for predicting the soot particle size distribution in turbulent flames. Combust. Flame, 189, 62–76. doi:10.1016/j.combustflame.2017.09.045
  • Soulard, O., and Sabelnikov, V.A. 2006. Eulerian Monte Carlo method for the joint velocity and mass-fraction probability density function in turbulent reactive gas flows. Combust. Explos. Shock Waves, 42, 753–762. doi:10.1007/s10573-006-0111-x
  • Thévenin, D., Behrendt, F., Maas, U., Przywara, B., and Warnatz, J. 1996. Development of a parallel direct simulation code to investigate reactive flows. Comput. Fluids, 25, 485–496. doi:10.1016/0045-7930(96)00009-6
  • Valiño, L. 1998. A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust., 60, 157–172. doi:10.1023/A:1009968902446
  • Vo, S., Kronenburg, A., Stein, O.T., and Cleary, M.J. 2017. Multiple mapping conditioning for silica nanoparticle nucleation in turbulent flows. Proc. Combust. Inst., 36, 1089–1097. doi:10.1016/j.proci.2016.08.088

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.